Skip to main content
Log in

On the discrete Orlicz Minkowski problem II

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The Orlicz Minkowski problem is a generalization of the \(L_p\) Minkowski problem. For a class of appropriate functions and discrete measures that have no essential subspaces, the existence is demonstrated for the discrete Orlicz Minkowski problem. This is a non-trivial extension of the discrete \(L_p\) Minkowski problem for \(p<0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Smoothness of the convex surface of bounded Gaussian curvature. C.R. (Dokl.) Acad. Sci. URSS 36, 195–199 (1942)

    MathSciNet  Google Scholar 

  2. Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Am. Math. Soc. 16(2), 443–459 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(2), 151–161 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26(3), 831–852 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Böröczky, K., Hegedűs, P., Zhu, G.: On the discrete logarithmic Minkowski problem. Int. Math. Res. Not. 6, 1807–1838 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Böröczky, K., Lutwak, E., Yang, D., Zhang, G., Zhao, Y.: The dual Minkowski problem for symmetric convex bodies. preprint

  7. Böröczky, K., Henk, M., Pollehn, H.: Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differ. Geom. 109(3), 411–429 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Chen, W.: \(L_p\) Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, S., Yau, S.: On the regularity of the solution of the n-dimensional Minkowski problem. Commun. Pure Appl. Math. 29(5), 495–516 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Chou, K., Wang, X.: A logarithmic Gauss curvature flow and the Minkowski problem. Ann. Inst. H. Poincaré Anal. Non Lineaire 17(6), 733–751 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Chou, K., Wang, X.: The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Fenchel, W., Jessen, B.: Mengenfunktionen und konvexe K\(\ddot{o}\)rper. Danske Vid. Selskab. Mat.-fys. Medd. 16, 1–31 (1938)

    Google Scholar 

  13. Gardner, R.J.: Geometric Tomography, 2nd edition, Encyclopedia of Mathematics and its Applications, vol. 58. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  14. Gardner, R., Hug, D., Weil, W.: Operations between sets in geometry. J. Eur. Math. Soc. 15(6), 2297–2352 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Gardner, R., Hug, D., Weil, W.: The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97(3), 427–476 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Gruber, P.M.: Convex and Discrete Geometry, Grundlehren Math. Wiss. Springer, Berlin (2007)

    Google Scholar 

  17. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Haberl, C., Schuster, F.: General \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 83(1), 1–26 (2009)

    MATH  Google Scholar 

  19. Haberl, C., Schuster, F.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257(3), 641–658 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Haberl, C., Schuster, F., Xiao, J.: An asymmetric affine P\(\acute{o}\)lya-Szeg\(\ddot{o}\) principle. Math. Ann. 352(3), 517–542 (2012)

    MathSciNet  Google Scholar 

  21. Henk, M., Pollehn, H.: Necessary subspace concentration conditions for the even dual Minkowski problem. Adv. Math. 323, 114–141 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Hu, C., Ma, X.-N., Shen, C.: On the Christoffel-Minkowski problem of Firey’s p-sum. Calc. Var. Partial Differ. Equ. 21, 137–155 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Huang, Q., He, B.: On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom. 48(2), 281–297 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216(2), 325–388 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Hug, D., Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\) Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699–715 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Jerison, D.: A Minkowski problem for electrostatic capacity. Acta Math. 176, 1–47 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Klain, D.: The Minkowski problem for polytopes. Adv. Math. 185, 270–288 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. Math. (2) 172(2), 1219–1267 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MATH  Google Scholar 

  33. Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    MATH  Google Scholar 

  34. Lutwak, E., Yang, D., Zhang, G.: On the \(L_p\)-Minkowski problem. Trans. Am. Math. Soc. 356(11), 4359–4370 (2004)

    MATH  Google Scholar 

  35. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the \(L_p\) Minkowski problem. Int. Math. Res. Not. 1–21 (2006)

  36. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, second expanded edition edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  39. Stancu, A.: The discrete planar \(L_0\)-Minkowski problem. Adv. Math. 167, 160–174 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Stancu, A.: On the number of solutions to the discrete two-dimensional \(L_0\)-Minkowski problem. Adv. Math. 180, 290–323 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Stancu, A.: The necessary condition for the discrete \(L_0\)-Minkowski problem in \({\mathbb{R}}^2\). J. Geom. 88, 162–168 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Wu, Y., Xi, D., Leng, G.: On the discrete Orlicz Minkowski problem. Trans. Am. Math. Soc. 371(3), 1795–1814 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Xi, D., Jin, H., Leng, G.: The Orlicz Brunn–Minkowski inequality. Adv. Math. 260, 350–374 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Xi, D., Leng, G.: Dar’s conjecture and the log-Brunn–Minkowski inequality. J. Differ. Geom. 103(1), 145–189 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, Y.: Existence of solutions to the even dual Minkowski problem. J. Differ. Geom. 110(3), 543–572 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, Y.: The dual Minkowski problem for negative indices. Calc. Var. Partial Differ. Equ. 56(2), 56:18 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(p<0\). Indiana Univ. Math. J. 66(4), 1333–1350 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(0<p<1\). J. Funct. Anal. 269(4), 1070–1094 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Zhu, G.: The centro-affine Minkowski problem for polytopes. J. Differ. Geom. 101(1), 159–174 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Zhu, G.: Continuity of the solution to the \(L_p\) Minkowski problem. Proc. Am. Math. Soc. 145(1), 379–386 (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the first named and the third named authors are supported by NSFC 11671249 and Shanghai Leading Academic Discipline Project (S30104). Research of the second named author is sponsored by Shanghai Sailing Program 16YF1403800, NSFC 11601310, and CPSF BX201600035.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xi, D. & Leng, G. On the discrete Orlicz Minkowski problem II. Geom Dedicata 205, 177–190 (2020). https://doi.org/10.1007/s10711-019-00471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00471-z

Keywords

Mathematics Subject Classification (2000)

Navigation