Census of bounded curvature paths

  • Jean Díaz
  • José AyalaEmail author
Original Paper


A bounded curvature path is a continuously differentiable piece-wise \(C^2\) path with bounded absolute curvature connecting two points in the tangent bundle of a surface. These paths have been widely considered in computer science and engineering since the bound on curvature models the trajectory of the motion of robots under turning circle constraints. Analyzing global properties of spaces of bounded curvature paths is not a simple matter since the length variation between length minimizers of arbitrary close endpoints or directions is in many cases discontinuous. In this note, we develop a simple technology allowing us to partition the space of spaces of bounded curvature paths into one-parameter families. These families of spaces are classified in terms of the type of connected components their elements have (homotopy classes, isotopy classes, or isolated points) as we vary a parameter defined in the reals. Consequently, we answer a question raised by Dubins (Pac J Math 11(2):471–481, 1961).


Bounded curvature paths Regular homotopies Dubins paths 



  1. 1.
    Agarwal, P.K., Biedl, T., Lazard, S., Robbins, S., Suri, S., Whitesides, S.: Curvature-constrained shortest paths in a convex polygon. SIAM J. Comput. 31(6), 1814–1851 (2002). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ayala, J.: Length minimising bounded curvature paths in homotopy classes. Topol. Appl. 193, 140–151 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ayala, J.: On the topology of the spaces of curvature constrained plane curves. Adv. Geom. 17(3), 283–292 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ayala, J., Kirszenblat, D., Rubinstein, J.H.: A geometric approach to shortest bounded curvature paths. Commun. Anal. Geom. 26(4), 679–697 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ayala, J., Rubinstein, J.H.: Non-uniqueness of the Homotopy Class of Bounded Curvature Paths (2014) arXiv:1403.4911 [math.MG]
  6. 6.
    Ayala, J., Rubinstein, J.H.: The classification of homotopy classes of bounded curvature paths. Isr. J. Math. 213(1), 79–107 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Backer, J., Kirkpatrick, D.: Finding curvature-constrained paths that avoid polygonal obstacles. In: SCG 07: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, pp. 66–73, New York, NY, USA, ACM Press, 2007Google Scholar
  8. 8.
    Boissonat, J.-D., Cerezo, A., Leblond, K.: Shortest paths of bounded curvature in the plane. In: Proceedings of the IEEE International Conference on Robotics and Automation. 3. Piscataway, NJ. pp. 2315–2320 (May 1992)Google Scholar
  9. 9.
    Boissonnat, J.-D., Lazard, S.: A polynomial-time algorithm for computing shortest paths of bounded curvature amidst moderate obstacles. Int. J. Comput. Geom. Appl. 13(3), 189–229 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brazil, M., Grossman, P.A., Thomas, D.A., Rubinstein, J.H., Lee, D., Wormald, N.C.: Constrained path optimisation for underground mine layout. In: The 2007 International Conference of Applied and Engineering Mathematics (ICAEM07), London, pp. 856–861 (2007)Google Scholar
  11. 11.
    Bui, X.-N., Soueres, P., Boissonnat, J.-D., Laumond, J.-P.: The Shortest Path Synthesis for Non-holonomic Robots Moving Forwards. Technical Report 2153, INRIA, Nice-Sophia-Antipolis (1994)Google Scholar
  12. 12.
    Chitsaz, H., LaValle, S.M.: Time-optimal paths for a Dubins airplane. In: 2007 46th IEEE Conference on Decision and Control. IEEE, pp. 2379–2384 (2007)Google Scholar
  13. 13.
    Chang, A., Brazil, M., Thomas, D.A., Rubinstein, J.H.: Curvature-constrained directional-cost paths in the plane. J. Glob. Optim. 53(4), 663–681 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Diaz, J., Ayala, J.: Dubins Explorer: A software for bounded curvature paths, (2014)
  15. 15.
    Dubins, L.E.: On curves of minimal length with constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 139–155 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dubins, L.E.: On plane curve with curvature. Pac. J. Math. 11(2), 471–481 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Duindam, V., Xu, J., Alterovitz, R., Sastry, S., Goldberg, K.: 3D motion planning algorithms for steerable needles using inverse kinematics. Int. J. Rob. Res. 57, 535–549 (2009)Google Scholar
  18. 18.
    Fortune, S., Wilfong, G.: Planning constrained motion. Ann. Math. Artif. Intell. 3(1), 21–82 (1991). Algorithmic motion planning in roboticsMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jacobs, P., Canny, J.: Planning smooth paths for mobile robots. In: Li, Z., Canny, J. (eds.) Nonholonomic Motion Planning, pp. 271–342. Kluwer Academic, Norwell, MA (1992)Google Scholar
  20. 20.
    Johnson, H.H.: An application of the maximum principle to the geometry of plane curves. Proc. Am. Math. Soc. 44(2), 432–435 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Markov, A.A.: Some examples of the solution of a special kind of problem on greatest and least quantities. Soobshch. Karkovsk. Mat. Obshch. 1, 250–276 (1887)Google Scholar
  22. 22.
    Ny, J.L., Feron, E., Frazzoli, E.: On the Dubins traveling salesman problem. IEEE Trans. Autom. Control 57(1), 265–270 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Owen, M., Beard, R.W., McLain, T.W.: Implementing Dubins airplane paths on fixed-wing UAVs*. In: Valavanis, K., Vachtsevanos, G. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 1677–1701. Springer, Dordrecht (2015)Google Scholar
  24. 24.
    Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Reif, J., Wang, H.: The complexity of the two dimensional curvature-constrained shortest-path problem. In: WAFR Õ98: Proceedings of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics : The Algorithmic Perspective, pp. 49–57, Natick, MA, USA. A. K. Peters, Ltd (1998)Google Scholar
  26. 26.
    Saldanha, N., Zulkhe, P.: Components of spaces of curves with constrained curvature on flat surfaces. Pac. J. Math. 281(1), 185–242 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shkel, A.M., Lumelsky, V.: Classification of the Dubins set. Robot. Auton. Syst. 34, 179–202 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Soueres, P., Laumond, J.P.: Shortest paths synthesis for a car-like robot. IEEE Trans. Autom. Control 41(5), 672–688 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sussmann, H.J.: Shortest 3-dimensional paths with a prescribed curvature bound, from: Proceeings of 34th IEEE Conference on Decision and Control (New Orleans), pp. 3306–3312 (1995)Google Scholar
  30. 30.
    Tsourdos, A., White, B., Shanmugavel, M.: Cooperative Path Planning of Unmanned Aerial Vehicles. Wiley, Chichester (2010)Google Scholar
  31. 31.
    Whitney, H.: On regular closed curves in the plane. Compos. Math. 4, 276–284 (1937)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.FIAUniversidad Arturo PratIquiqueChile

Personalised recommendations