Canonical sphere bundles of the Grassmann manifold


For a given Hilbert space \(\mathcal H\), consider the space of self-adjoint projections \(\mathcal P(\mathcal H)\). In this paper we study the differentiable structure of a canonical sphere bundle over \(\mathcal P(\mathcal H)\) given by

$$\begin{aligned} \mathcal R=\{\, (P,f)\in \mathcal P(\mathcal H)\times \mathcal H \, : \, Pf=f , \, \Vert f\Vert =1\, \}. \end{aligned}$$

We establish the smooth action on \(\mathcal R\) of the group of unitary operators of \(\mathcal H\), and it thereby turns out that the connected components of \(\mathcal R\) are homogeneous spaces. Then we study the metric structure of \(\mathcal R\) by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into \(\mathcal R\) by the natural action of the unitary group. Then we study the restricted bundle \(\mathcal R_2^+\) given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow \(\mathcal R_2^+\) with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for \(\mathcal R_2^+\), again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.

This is a preview of subscription content, log in to check access.


  1. 1.

    Andruchow, E., Larotonda, G.: Hopf–Rinow theorem in the Sato Grassmannian. J. Funct. Anal. 255(7), 1692–1712 (2008)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Andruchow, E., Larotonda, G.: The rectifiable distance in the unitary Fredholm group. Studia Math. 196, 151–178 (2010)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Andruchow, E., Larotonda, G., Recht, L.: Finsler geometry and actions of the \(p\)-Schatten unitary groups. Trans. Am. Math. Soc. 362, 319–344 (2010)

    Google Scholar 

  4. 4.

    Andruchow, E., Recht, L., Varela, A.: Metric geodesics of isometries in a Hilbert space and the extension problem. Proc. Am. Math. Soc. 135, 2527–2537 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Beltiţ\({{\breve{\rm a}}}\), D.: Smooth Homogeneous Structures in Operator Theory, Monographs and Surveys in Pure and Applied Mathematics 137. Chapman and Hall/CRC, Boca Raton (2006)

  6. 6.

    Beltiţ\({{\breve{\rm a}}}\), D., Ratiu, T., Tumpach, A.: The restricted Grassmannian, Banach Lie–Poisson spaces and coadjoint orbits. J. Funct. Anal. 247(1), 138–168 (2007)

  7. 7.

    Bottazzi, T., Varela, A.: Unitary subgroups and orbits of compact self-adjoint operators. Studia Math. 238, 155–176 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Chiumiento, E.: Geometry of \(\mathfrak{I}\)-Stiefel manifolds. Proc. Am. Math. Soc. 138(1), 341–353 (2010)

    Google Scholar 

  9. 9.

    Corach, G., Porta, H., Recht, L.: The geometry of spaces of projections in \(C^*\)-algebras. Adv. Math. 101(1), 59–77 (1993)

    Google Scholar 

  10. 10.

    Davis, C., Kahan, W.M., Weinberger, H.F.: Norm-preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19, 445–469 (1982)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Durán, C.E., Mata-Lorenzo, L.E., Recht, L.: Metric geometry in homogeneous spaces of the unitary group of a \(C^*\)-algebra I. Minimal curves. Adv. Math. 184(2), 342–366 (2004)

    Google Scholar 

  12. 12.

    Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Universitext, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  13. 13.

    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Reprint of the 1963 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York (1996)

  14. 14.

    Koliha, J.J.: Range projections of idempotents in \(C^*\)-algebras. Demonstratio Math. 34(1), 91–103 (2001)

    Google Scholar 

  15. 15.

    Lang, S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, 160, 3rd edn. Springer, New York (1995)

    Google Scholar 

  16. 16.

    Kovarik, Z.V.: Manifolds of linear involutions. Linear Algebra Appl. 24, 271–287 (1979)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Krein, M.G.: The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications. Mat. Sb. 20 (1947), 431–495; 21 (1947), 365–404 (in Russian)

  18. 18.

    Mata-Lorenzo, L.E., Recht, L.: Infinite-dimensional homogeneous reductive spaces. Acta Cient. Venezolana 43(2), 76–90 (1992)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Princeton University Press, Princeton (1974)

    Google Scholar 

  20. 20.

    Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1986)

    Google Scholar 

  21. 21.

    Porta, H., Recht, L.: Minimality of geodesics in Grassmann manifolds. Proc. Am. Math. Soc. 100, 464–466 (1987)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Raeburn, I.: The relationship between a commutative Banach algebra and its maximal ideal space. J. Funct. Anal. 25(4), 366–390 (1977)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Riesz, F., Sz.-Nagy, B.: Functional Analysis. Ungar, New York (1955)

    Google Scholar 

  24. 24.

    Steenrod, N.E.: The classification of sphere bundles. Ann. Math. 45(2), 294–311 (1944)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Whitney, H.: On the theory of sphere-bundles. Proc. Natl. Acad. Sci. USA 26(2), 148–153 (1940)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eduardo Chiumiento.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by CONICET (PIP 2014 11220130100525), ANPCyT (PICT 2015 1505) and UNLP (10001940 11X829).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andruchow, E., Chiumiento, E. & Larotonda, G. Canonical sphere bundles of the Grassmann manifold. Geom Dedicata 203, 179–203 (2019).

Download citation


  • Sphere bundle
  • Finsler metric
  • Riemannian metric
  • Geodesic
  • Projection
  • Flag manifold

Mathematics Subject Classification (2010)

  • 22E65
  • 47B10
  • 58B20