Dual area measures and local additive kinematic formulas


We prove that higher moment maps on area measures of a euclidean vector space are injective, while the kernel of the centroid map equals the image of the first variation map. Based on this, we introduce the space of smooth dual area measures on a finite-dimensional euclidean vector space and prove that it admits a natural convolution product which encodes the local additive kinematic formulas for groups acting transitively on the unit sphere. As an application of this new integral-geometric structure, we obtain the local additive kinematic formulas in hermitian vector spaces in a very explicit way.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alesker, S.: The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14(1), 1–26 (2004)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bernig, A.: Algebraic integral geometry. In: Global Differential Geometry. Volume 17 of Springer Proceedings in Mathematics, pp. 107–145. Springer, Berlin (2012)

  3. 3.

    Bernig, A.: Invariant valuations on quaternionic vector spaces. J. Inst. Math. Jussieu 11, 467–499 (2012)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bernig, A., Bröcker, L.: Valuations on manifolds and Rumin cohomology. J. Differ. Geom. 75(3), 433–457 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bernig, A., Faifman, D.: Generalized translation invariant valuations and the polytope algebra. Adv. Math. 290, 36–72 (2016)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bernig, A., Fu, J.H.G.: Convolution of convex valuations. Geom. Dedicata 123, 153–169 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. 173, 907–945 (2011)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal 24(2), 403–492 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bernig, A., Fu, J.H. G., Solanes, G.: Dual curvature measures in Hermitian integral geometry. In: Analytic Aspects of Convexity, volume 25 of Springer INdAM series, pp. 1–17. Springer, Cham (2018)

  10. 10.

    Bernig, A., Hug, D.: Kinematic formulas for tensor valuations. J. Reine Angew. Math. 736, 141–191 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Fu, J.H.G.: Kinematic formulas in integral geometry. Indiana Univ. Math. J. 39(4), 1115–1154 (1990)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Fu, J.H.G.: Structure of the unitary valuation algebra. J. Differ. Geom. 72(3), 509–533 (2006)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)

    Google Scholar 

  14. 14.

    Huybrechts, D.: Complex Geometry: An Introduction. Springer, Berlin (2005)

    Google Scholar 

  15. 15.

    Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Lezioni Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. 16.

    McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. (3) 35(1), 113–135 (1977)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nijenhuis, A.: On Chern’s kinematic formula in integral geometry. J. Differ. Geom. 9, 475–482 (1974)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Park, H.: Kinematic formulas for the real subspaces of complex space forms of dimension \(2\) and \(3\). Ph.D. thesis, University of Georgia (2002)

  19. 19.

    Rumin, M.: Differential forms on contact manifolds. J. Differ. Geom. 39(2), 281–330 (1994)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Solanes, G.: Contact measures in isotropic spaces. Adv. Math. 317, 645–664 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Wannerer, T.: Integral geometry of unitary area measures. Adv. Math. 263, 1–44 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wannerer, T.: The module of unitarily invariant area measures. J. Differ. Geom. 96(1), 141–182 (2014)

    MathSciNet  Article  Google Scholar 

Download references


I thank Gil Solanes for many useful comments on a first version of this paper.

Author information



Corresponding author

Correspondence to Andreas Bernig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by DFG Grant BE 2484/5-2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernig, A. Dual area measures and local additive kinematic formulas. Geom Dedicata 203, 85–110 (2019). https://doi.org/10.1007/s10711-019-00427-3

Download citation


  • Area measure
  • Valuation
  • Kinematic formula
  • Integral geometry

Mathematics Subject Classification (2000)

  • 53C65
  • 52A22