Skip to main content
Log in

Principal Schottky bundles over Riemann surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We introduce and study (strict) Schottky G-bundles over a compact Riemann surface X, where G is a connected reductive algebraic group. Strict Schottky representations are shown to be related to branes in the moduli space of G-Higgs bundles over X, and we prove that all Schottky G-bundles have trivial topological type. Generalizing the Schottky moduli map introduced in Florentino (Manuscr Math 105:69–83, 2001) to the setting of principal bundles, we prove its local surjectivity at the good and unitary locus. Finally, we prove that the Schottky map is surjective onto the space of flat bundles for two special classes: when G is an abelian group over an arbitrary X, and the case of a general G-bundle over an elliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Interestingly, the consideration of the Schottky uniformization problem for vector bundles over Mumford curves, in the framework of p-adic analysis, has furnished stronger results. (see [11]).

  2. We are using a left action both on Y and on G; this was chosen (other options would be equivalent) for a standard use of Fox calculus in Sect. 8.

  3. For a general real Lie group, the analogous pairing defines a smooth (\(C^{\infty }\)) symplectic structure, see [20].

  4. Note that the case \(X=\mathbb {P}^{1}\) (\(g=0\)) is irrelevant, as \(\pi _{1}\) is trivial and so are Schottky representations.

References

  1. Anchouche, B., Biswas, I.: Einstein–Hermitian connections on polystable principal bundles over a compact Kahler manifold. Am. J. Math. 123(2), 207–228 (2001)

    Article  MATH  Google Scholar 

  2. Atiyah, M.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. 7, 414–452 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auerbach, H.: Sur les groupes linéaires bornés (III). Stud. Math. 5(1), 43–45 (1934)

    Article  MATH  Google Scholar 

  4. Azad, H., Biswas, I.: On holomorphic principal bundles over a compact Riemann surface admitting a flat connection, II. Bull. Lond. Math. Soc. 35, 440–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baraglia, D., Schaposnik, L.: Higgs bundles and \((A, B, A)\)-branes. Commun. Math. Phys. 331(3), 1271–1300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baranovsky, V., Ginzburg, V.: Conjugacy classes in loop groups and \(G\)-bundles on elliptic curves. Int. Math. Res. Not. 15, 733–751 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beauville, A.: Vector bundles on curves and generalized theta functions: recent results and open problems. In: Clemens, H., Kollár, J. (eds.) Current Topics in Complex Algebraic Geometry. Mathematical Sciences Research Institute Publications, vol. 28. Cambridge University Press, Cambridge (1995)

  8. Bers, L.: Automorphic forms for Schottky groups. Adv. Math. 16, 332–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, I., Hoffmann, N.: A Torelli theorem for moduli spaces of principal bundles over a curve. Ann. Inst. Fourier 62(1), 87–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown, K.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York (1994)

    Google Scholar 

  11. Faltings, G.: Semistable vector bundles on Mumford curves. Invent. Math. 74(2), 199–212 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Florentino, C.: Schottky uniformization and vector bundles over Riemann surface. Manuscr. Math. 105, 69–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Florentino, C., Casimiro, A.: Stability of affine G-varieties and irreducibility in reductive groups. Int. J. Math. 23(8), 30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Florentino, C., Ludsteck, T.: Unipotent Schottky bundles on Riemann surfaces and complex tori. Int. J. Math. 25(6), 23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Florentino, C., Mourão, J., Nunes, J.P.: Coherent state transforms and vector bundles on elliptic curves. J. Funct. Anal. 204(2), 355–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Florentino, C., Mourão, J., Nunes, J.P.: Coherent state transforms and theta functions. Tr. Mat. Inst. Steklova 246, 283–302 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Ford, L.: Automorphic Functions, 2nd edn. Chelsea Publishing Co., New York (1951)

    MATH  Google Scholar 

  18. Friedman, R., Morgan, J., Witten, E.: Principal \(G\)-bundles over elliptic curves. Math. Res. Lett. 5(1–2), 97–118 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. García-Prada, Oscar, Oliveira, André: Connectedness of Higgs bundle moduli for complex reductive Lie groups. Asian J. Math. 21(5), 791–810 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2), 200–225 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldman, W.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gunning, R.: Lectures on Vector Bundles Over Riemann Surfaces. University of Tokyo Press, Tokyo (1967)

    MATH  Google Scholar 

  23. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lawton, Sean, Ramras, Daniel: Covering spaces of character varieties. N. Y. J. Math. 21, 383–416 (2015). With an appendix by Nan-Kuo Ho and Chiu-Chu Melissa Liu

    MathSciNet  MATH  Google Scholar 

  25. Li, J.: The space of surface group representations. Manuscr. Math. 78(3), 223–243 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups. Mem. Am. Math. Soc. 58(336), 2205–2213 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Martin, B.: Restrictions of representations of surface group to a pair of free subgroups. J. Algebra 225(1), 231–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maskit, B.: A characterization of Schottky groups. J. Anal. Math. 19, 227–230 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Narasimhan, M., Seshadri, C.: Holomorphic vector bundles on a compact Riemann surface. Math. Ann. 155, 69–80 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. Narasimhan, M., Seshadri, C.: Stable unitary vector bundles on compact Riemann surface. Ann. Math. (2) 82(3), 540–567 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Newstead, P.: Introduction to Moduli Problems and Orbitspaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51. Tata Institute of FundamentalResearch, Bombay; Narosa Publishing House, New Delhi, Bombay (1978)

  32. Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramanathan, A.: Moduli for principal bundles over algebraic curves: ii. Proc. Indian Acad. Sci. Math. Sci. 106(4), 421–449 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sikora, A.: Character varieties. Trans. Am. Math. Soc. 364(10), 5173–5208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math 79, 47–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tu, L.: Semistable bundles over an elliptic curve. Adv. Math. 98(1), 1–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tyurin, A.: Quantization, Classical and Quantum Field Theory and Theta Functions. CRM Monograph Series, vol. 21. American Mathematical Society, Providence, RI (2003)

    Book  MATH  Google Scholar 

  38. Weil, A.: Généralization des fonctions abéliennes. J. Math Pure Appl. 17, 47–87 (1938)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank I. Biswas, E. Franco, P. B. Gothen, C. Meneses-Torres and A. Oliveira for several useful discussions on Schottky bundles and related subjects, and the referees for clarifying comments. The last author thanks the organizers of the Simons Center for Geometry and Physics workshop on Higgs bundles, and L. Schaposnik and D. Baraglia for details on their construction of (A,B,A) branes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Florentino.

Additional information

This work was partially supported by the Projects PTDC/MAT/120411/2010, PTDC/MAT-GEO/0675/2012 and EXCL/MAT-GEO/0222/2012, UID/MAT/00297/2013, FCT, Portugal, and by the USA NSF Grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casimiro, A.C., Ferreira, S. & Florentino, C. Principal Schottky bundles over Riemann surfaces. Geom Dedicata 201, 379–409 (2019). https://doi.org/10.1007/s10711-018-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0398-2

Keywords

Mathematics Subject Classification

Navigation