Skip to main content
Log in

Divergence functions of Thompson groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove that the R. Thompson groups FTV have linear divergence functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Recall the standard relation on the set of functions \({\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\): \(f\preceq _C g\) if \(f(x)\le Cg(Cx)+Cx+C\) for some \(C>1\) and all x. This defines the known equivalence relation on the set of functions \({\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\): \(f\equiv _C g\) if \(f\preceq _C g\) and \(g\preceq _C f\).

  2. \(p\equiv q\) denotes letter-by-letter equality of words pq.

References

  1. Birget, J.C.: The groups of Richard Thompson and complexity. Int. J. Algebra Comput. 14, 569–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bleak, C., Bowman, H., Gordon, A., Graham, G., Hughes, J., Matucci, F., Sapir, J.: Centralizers in the R. Thompson group \(V_n\). Groups Geom. Dyn. 7(4), 821–865 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bleak, C., Salazar-Daz, O.: Free products in R. Thompson’s group \(V\). Trans. Am. Math. Soc. 365(11), 5967–5997 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brin, M.G.: Higher dimensional Thompson groups. Geom. Dedicata 108, 163–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brin, M.G.: The algebra of strand splitting. I. A braided version of Thompson’s group \(V\). J. Group Theory 10(6), 757–788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burillo, J.: Quasi-isometrically embedded subgroups of Thompson’s group F. J. Algebra 212(1), 65–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burillo, J., Cleary, S., Stein, M.I.: Metrics and embeddings of generalizations of Thompson’s group \(F\). Trans. Am. Math. Soc. 353(4), 1677–1689 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burillo, J., Cleary, S., Stein, M., Taback, J.: Combinatorial and metric properties of Thompson’s group \(T\). Trans. Am. Math. Soc. 361, 631–652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cannon, J., Floyd, W., Parry, W.: Introductory notes on Richard Thompson’s groups. L’Enseignement Mathematique 42, 215–256 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Druţu, C., Mozes, S., Sapir, M.: Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Am. Math. Soc. 362(5), 2451–2505 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Druţu, C., Sapir, M.: Tree-graded spaces and asymptotic cones ofgroups. Topology 44, 959–1058 (2005). (with an appendix by D. Osinand M. Sapir)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farley, D.S.: Actions of picture groups on CAT(0) cubical complexes. Geom. Dedicata 110, 221–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gersten, S.: Quadratic divergence of geodesics in CAT(0) spaces. Geom. Funct. Anal. 4(1), 37–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golan, G.: The generation problem in Thompson group \(F\). arXiv:1608.02572. Accessed 1 July 2017

  15. Golan, G., Sapir, M.: On Jones’ subgroup of R. Thompson group \(F\). J. Algebra 470, 122–159 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guba, V.: The Dehn function of Richard Thompson’s group \(F\) is quadratic. Invent. Math. 163(2), 313–342 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guba, V., Sapir, M.: Diagram groups. Mem. Am. Math. Soc. 130(620), 1–117 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Jones, V.: Some unitary representations of Thompson’s groups \(F\) and \(T\). J. Comb. Algebra 1(1), 1–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Juschenko, K., Monod, N.: Cantor systems, piecewise translations and simple amenable groups. Ann. Math. (2) 178(2), 775–787 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macura, N.: Detour functions and quasi-isometries. Q. J. Math. 53(2), 207–239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lodha, Y., Moore, J.T.: A nonamenable finitely presented group of piecewise projective homeomorphisms. (English summary) Groups Geom. Dyn. 10(1), 177–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubotzky, A., Mozes, S., Raghunathan, M.S.: The word and Riemannian metrics on lattices of semisimple groups. IHES Sci. Publ. Math. 91, 5–53 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sapir.

Additional information

The research of the first author was supported in part by a Fulbright grant and a post-doctoral scholarship from Bar-Ilan University, the research of the second author was supported in part by the NSF Grant DMS-1500180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golan, G., Sapir, M. Divergence functions of Thompson groups. Geom Dedicata 201, 227–242 (2019). https://doi.org/10.1007/s10711-018-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0390-x

Keywords

Navigation