Skip to main content
Log in

Families of spherical surfaces and harmonic maps

  • Original paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study singularities of constant positive Gaussian curvature surfaces and determine the way they bifurcate in generic 1-parameter families of such surfaces. We construct the bifurcations explicitly using loop group methods. Constant Gaussian curvature surfaces correspond to harmonic maps, and we examine the relationship between the two types of maps and their singularities. Finally, we determine which finitely \(\mathcal {A}\)-determined map-germs from the plane to the plane can be represented by harmonic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold, V.: Wave front evolution and equivariant Morse lemma. Commun. Pure Appl. Math. 29, 557–582 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.: Indexes of singular points of 1-forms on manifolds with boundary, convolutions of invariants of groups generated by reflections, and singular projections of smooth surfaces. Uspekhi Mat. Nauk 34, 3–38 (1979)

    MathSciNet  Google Scholar 

  3. Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of Differentiable Maps I, Monographs in Mathematics, vol. 82. Birkhäuser, Boston (1985)

    Book  Google Scholar 

  4. Arnold, V.I.: Singularities of Caustics and Wave Fronts, Mathematics and its Applications (Soviet Series), vol. 62. Kluwer Academic Publishers Group, Dordrecht (1990)

    Book  Google Scholar 

  5. Brander, D.: Spherical surfaces. Exp. Math. 25(3), 257–272 (2016). https://doi.org/10.1080/10586458.2015.1077359

    Article  MathSciNet  MATH  Google Scholar 

  6. Brander, D., Dorfmeister, J.F.: The Björling problem for non-minimal constant mean curvature surfaces. Commun. Anal. Geom. 18, 171–194 (2010)

    Article  MATH  Google Scholar 

  7. Bruce, J.: Wavefronts and parallels in Euclidean space. Math. Proc. Camb. Philos. Soc. 93, 323–333 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  9. Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6, 633–668 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukui, T., Hasegawa, M.: Singularities of parallel surfaces. Tohoku Math. J. 2(64), 387–408 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaffney, T.: The structure of \({T}{\cal{A}}(f)\), classification and an application to differential geometry. Proc. Symp. Pure Math. 40, 409–427 (1983)

    Article  Google Scholar 

  12. Goryunov, V.V.: Singularities of projections of complete intersections. In: Current Problems in Mathematics, Vol. 22, Itogi Nauki i Tekhniki, pp. 167–206. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1983)

  13. Ishikawa, G., Machida, Y.: Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Int. J. Math. 17, 269–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izumiya, S., Saji, K.: The mandala of Legendrian dualities for pseudo-spheres of Lorentz–Minkowski space and flat spacelike surfaces. J. Singul. 2, 92–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Izumiya, S., Saji, K., Takahashi, M.: Horospherical flat surfaces in hyperbolic 3-space. J. Math. Soc. Jpn. 62, 789–849 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kabata, Y.: Recognition of plane-to-plane map-germs. Topol. Appl. 202, 216–238 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koenderink, J., van Doorn, A.: The singularities of the visual mapping. Biol. Cybern. 24, 51–59 (1976)

    Article  MATH  Google Scholar 

  18. Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic space. Pac. J. Math. 221, 303–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Looijenga, E.: Structural stability of smooth families of \({C}^{\infty }\)-functions. Ph.D. Thesis. Universiteit van Amsterdam (1974)

  20. Martinet, J.: Singularities of Smooth Functions and Maps, LMS Lecture Note Series, vol. 58. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  21. Platonova, O.: Singularities of projections of smooth surfaces. Russ. Math. Surv. 39(1), 177–178 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pressley, A., Segal, G.: Loop Groups. Clarendon Press, Oxford (1986). Oxford Mathematical Monographs

    MATH  Google Scholar 

  23. Rieger, J.: Families of maps from the plane to the plane. J. Lond. Math. Soc. 36, 351–369 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rieger, J., Ruas, M.: Classification of \({\cal{A}}\)-simple germs from \(k^n\) to \(k^2\). Compos. Math. 79, 99–108 (1991)

    MATH  Google Scholar 

  25. Saji, K.: Criteria for singularities of smooth maps from the plane into the plane and their applications. Hiroshima Math. J. 40, 229–239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. 2(169), 491–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wall, C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13, 481–539 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Whitney, H.: On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. (2) 62, 374–410 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wood, J.: Singularities of harmonic maps and applications of the Gauss–Bonnet formula. Am. J. Math. 99, 1329–1344 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the referee for valuable suggestions. Part of the work in this paper was carried out while the second author was a visiting professor at Northeastern University, Boston, Massachusetts, USA. He would like to thank Terry Gaffney and David Massey for their hospitality during his visit and FAPESP for financial support with the grant 2016/02701-4. He is partially supported by the grants FAPESP 2014/00304-2 and CNPq 302956/2015-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Brander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brander, D., Tari, F. Families of spherical surfaces and harmonic maps. Geom Dedicata 201, 203–225 (2019). https://doi.org/10.1007/s10711-018-0389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0389-3

Keywords

Mathematics Subject Classification (2010)

Navigation