Brown, A., Hertz, F.R., Wang, Z.: Global smooth and topological rigidity of hyperbolic lattice actions. Ann. Math. (2) 186(3), 913–972 (2017)
MathSciNet
MATH
Article
Google Scholar
Brin, M., Pesin, Y.: Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 38, 170–212 (1974). (Russian)
MathSciNet
MATH
Google Scholar
Damjanović, D.: Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. J. Mod. Dyn. 1(4), 665–688 (2007)
MathSciNet
MATH
Article
Google Scholar
Damjanovic, D., Katok, A.: Local rigidity of actions of higher rank abelian groups and KAM method. ERA-AMS 10, 142–154 (2004)
MathSciNet
MATH
Google Scholar
Damjanović, D., Katok, A.: Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic \(\mathbb{R}^k\) actions. Discrete Contin. Dyn. Syst. 13(4), 985–1005 (2005)
MathSciNet
MATH
Article
Google Scholar
Damjanović, D., Katok, A.: Local rigidity of partially hyperbolic actions I. KAM method and \(\mathbb{Z}^k\) actions on the torus. Ann. Math. (2) 172(3), 1805–1858 (2010)
MathSciNet
MATH
Article
Google Scholar
Damjanović, D., Katok, A.: Local rigidity of partially hyperbolic actions. II:the geometric method and restrictions of Weyl chamber flows on \(SL(n,{\mathbb{R}})/\Gamma \). Int. Math. Res. Not. IMRN 1(19), 4405–4430 (2011)
MathSciNet
MATH
Google Scholar
Damjanovic, D., Katok, A.: Local rigidity of homogeneous parabolic actions: I. A model case. J. Mod. Dyn. 5(2), 203–235 (2011)
MathSciNet
MATH
Article
Google Scholar
Deodhar, V.V.: On central extensions of rational points of algebraic groups. Am. J. Math. 100(2), 303–386 (1978)
MathSciNet
MATH
Article
Google Scholar
Fisher, D., Kalinin, B., Spatzier, R.: Global rigidity of higher rank Anosov actions on tori and nilmanifolds. With an appendix by James F. Davis. J. Am. Math. Soc. 26(s), 167–198 (2013)
MATH
Google Scholar
Gleason, A.M., Palais, R.S.: On a class of transformation groups. Am. J. Math. 79, 631–648 (1957)
MathSciNet
MATH
Article
Google Scholar
Goto, M.: Index of the exponential map of a semi-algebraic group. Am. J. Math. 100(4), 837–843 (1978)
MathSciNet
MATH
Article
Google Scholar
Graev, M.I.: On free products of topological groups. Izv. Akad. Nauk SSSR Ser. Mat. 14(4), 343–354 (1950)
MathSciNet
Google Scholar
Guysinsky, M., Katok, A.: Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations. Math. Res. Lett. 5, 149–163 (1998)
MathSciNet
MATH
Article
Google Scholar
Helgason, S.: Differential Geometry and Symmetric Spaces. AMS Chelsea Pub., cop., Providence (2001)
MATH
Book
Google Scholar
Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)
Book
Google Scholar
Humphreys, J.E.: Conjugacy Classes in Semisimple Algebraic Groups. Mathematical Surveys and Monographs, vol. 43. American Mathematical Society, Providence (1995)
Google Scholar
Kalinin, B., Spatzier, R.: On the classification of cartan actions. Geom. Funct. Anal. 17, 468–490 (2007)
MathSciNet
MATH
Article
Google Scholar
Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Front Cover. Cambridge University Press, Cambridge (1997)
MATH
Google Scholar
Katok, A., Kononenko, A.: Cocycles’ stability for partially hyperbolic systems. Math. Res. Lett. 3(2), 191–210 (1996)
MathSciNet
MATH
Article
Google Scholar
Katok, A., Lewis, J.: Local rigidity for certain groups of toral automorphisms. Israel J. Math. 75(2–3), 203–241 (1991)
MathSciNet
MATH
Article
Google Scholar
Katok, A., Spatzier, R.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publ. Math. IHES 79, 131–156 (1994)
MathSciNet
MATH
Article
Google Scholar
Katok, A., Spatzier, R.J.: Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova (Din. Sist. i Smezhnye Vopr.) 216, 292–319 (1997)
MathSciNet
MATH
Google Scholar
Katok, A., Spatzier, R.: Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Lett. 1, 193–202 (1994)
MathSciNet
MATH
Article
Google Scholar
Katok, A., Niţică, V., Török, A.: Non-abelian cohomology of abelian Anosov actions. Ergod. Theory Dyn. Syst. 20(1), 259–288 (2000)
MathSciNet
MATH
Article
Google Scholar
Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17. Springer, Berlin (1991)
Google Scholar
Margulis, G.A., Qian, N.: Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices. Ergodic Theory Dyn. Syst. 21(1), 121–164 (2001)
MathSciNet
MATH
Article
Google Scholar
Morris, S.A.: Free products of topological groups. Bull. Aust. Math. Soc. 4, 17–29 (1971)
MathSciNet
MATH
Article
Google Scholar
Milnor, J.: Introduction to Algebraic K-Theory. Princeton University Press, Princeton (1971)
MATH
Google Scholar
Ordman, E.T.: Free products of topological groups with equal uniformities I. Colloq. Math. 31, 37–43 (1974)
MathSciNet
MATH
Article
Google Scholar
Ordman, E.T.: Free products of topological groups which are \(k_\omega \)-spaces. Trans. Am. Math. Soc. 191, 61–73 (1974)
MATH
Google Scholar
Pugh, C., Shub, M., Wilkinson, A.: Hölder foliations, revisited. J. Mod. Dyn. 6(1), 79–120 (2012)
MathSciNet
MATH
Article
Google Scholar
Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972)
MATH
Book
Google Scholar
Rodriguez-Hertz, F., Wang, Z.: Global rigidity of higher rank abelian Anosov algebraic actions. Invent. Math. 198(1), 165–209 (2014)
MathSciNet
MATH
Article
Google Scholar
Steinberg, R.: Générateurs, relations et revêtements de groupes algébriques. In: Colloque sur la Théorie des Groupes Algébriques, Bruxelles, pp. 113–127 (1962)
Steinberg, R.: Lecture Notes on Chevalley Groups. Yale University, New Haven (1967)
Google Scholar
Varadarajan, V.: Lie Groups, Lie Algebras, and Their Representations. Springer, New York (1984)
MATH
Book
Google Scholar
Vinhage, K.: On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. J. Mod. Dyn. 9(01), 25–49 (2015)
MathSciNet
MATH
Article
Google Scholar
Zhenqi Jenny Wang: Local rigidity of partially hyperbolic actions. J. Mod. Dyn. 4(2), 271–327 (2010)
MathSciNet
MATH
Article
Google Scholar
Zhenqi Jenny Wang: New cases of differentiable rigidity for partially hyperbolic actions: symplectic groups and resonance directions. J. Mod. Dyn. 4(4), 585–608 (2010)
MathSciNet
MATH
Article
Google Scholar
Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Birkhäuser, Boston (1984)
MATH
Book
Google Scholar