Skip to main content

Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method

Abstract

We show local and cocycle rigidity for most abelian higher-rank partially hyperbolic algebraic actions on homogeneous spaces obtained from semisimple Lie groups as well as their semidirect products. The method of proof uses a combination of geometric method and the theory of central extensions. The principal difference with previous work are the new aspects of the proof and treatment of abelian actions which are not restrictions of Weyl chamber flows. It is also the first time that partially hyperbolic twisted symmetric space examples have been treated in the literature.

This is a preview of subscription content, access via your institution.

Notes

  1. For general actions, there is certain ambiguity to make this definition formal, but for homogeneous actions, the splitting is related to algebraic properties of homomorphism i See Sect. 2.

  2. Global rigidity for abelian actions has been established in certain settings as well, see for instance [10, 18, 34].

  3. Some possible examples followed from previous work, even though it was never written down. However, for these examples, strong assumptions on the toral fiber of the action is also required, which makes the these examples very special. For example, local rigidity on the quotients of the semidirect product \(SL(n,\mathbb {R})\ltimes _\rho V\) where \(\rho \) is the adjoint representation cannot be handled previously, but can be handled by our methods.

References

  1. Brown, A., Hertz, F.R., Wang, Z.: Global smooth and topological rigidity of hyperbolic lattice actions. Ann. Math. (2) 186(3), 913–972 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brin, M., Pesin, Y.: Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 38, 170–212 (1974). (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Damjanović, D.: Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. J. Mod. Dyn. 1(4), 665–688 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damjanovic, D., Katok, A.: Local rigidity of actions of higher rank abelian groups and KAM method. ERA-AMS 10, 142–154 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Damjanović, D., Katok, A.: Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic \(\mathbb{R}^k\) actions. Discrete Contin. Dyn. Syst. 13(4), 985–1005 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Damjanović, D., Katok, A.: Local rigidity of partially hyperbolic actions I. KAM method and \(\mathbb{Z}^k\) actions on the torus. Ann. Math. (2) 172(3), 1805–1858 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Damjanović, D., Katok, A.: Local rigidity of partially hyperbolic actions. II:the geometric method and restrictions of Weyl chamber flows on \(SL(n,{\mathbb{R}})/\Gamma \). Int. Math. Res. Not. IMRN 1(19), 4405–4430 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Damjanovic, D., Katok, A.: Local rigidity of homogeneous parabolic actions: I. A model case. J. Mod. Dyn. 5(2), 203–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deodhar, V.V.: On central extensions of rational points of algebraic groups. Am. J. Math. 100(2), 303–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fisher, D., Kalinin, B., Spatzier, R.: Global rigidity of higher rank Anosov actions on tori and nilmanifolds. With an appendix by James F. Davis. J. Am. Math. Soc. 26(s), 167–198 (2013)

    MATH  Google Scholar 

  11. Gleason, A.M., Palais, R.S.: On a class of transformation groups. Am. J. Math. 79, 631–648 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goto, M.: Index of the exponential map of a semi-algebraic group. Am. J. Math. 100(4), 837–843 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Graev, M.I.: On free products of topological groups. Izv. Akad. Nauk SSSR Ser. Mat. 14(4), 343–354 (1950)

    MathSciNet  Google Scholar 

  14. Guysinsky, M., Katok, A.: Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations. Math. Res. Lett. 5, 149–163 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Helgason, S.: Differential Geometry and Symmetric Spaces. AMS Chelsea Pub., cop., Providence (2001)

    Book  MATH  Google Scholar 

  16. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Book  Google Scholar 

  17. Humphreys, J.E.: Conjugacy Classes in Semisimple Algebraic Groups. Mathematical Surveys and Monographs, vol. 43. American Mathematical Society, Providence (1995)

    Google Scholar 

  18. Kalinin, B., Spatzier, R.: On the classification of cartan actions. Geom. Funct. Anal. 17, 468–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Front Cover. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Katok, A., Kononenko, A.: Cocycles’ stability for partially hyperbolic systems. Math. Res. Lett. 3(2), 191–210 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katok, A., Lewis, J.: Local rigidity for certain groups of toral automorphisms. Israel J. Math. 75(2–3), 203–241 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katok, A., Spatzier, R.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publ. Math. IHES 79, 131–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katok, A., Spatzier, R.J.: Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova (Din. Sist. i Smezhnye Vopr.) 216, 292–319 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Katok, A., Spatzier, R.: Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Lett. 1, 193–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Katok, A., Niţică, V., Török, A.: Non-abelian cohomology of abelian Anosov actions. Ergod. Theory Dyn. Syst. 20(1), 259–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17. Springer, Berlin (1991)

    Google Scholar 

  27. Margulis, G.A., Qian, N.: Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices. Ergodic Theory Dyn. Syst. 21(1), 121–164 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morris, S.A.: Free products of topological groups. Bull. Aust. Math. Soc. 4, 17–29 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. Milnor, J.: Introduction to Algebraic K-Theory. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  30. Ordman, E.T.: Free products of topological groups with equal uniformities I. Colloq. Math. 31, 37–43 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ordman, E.T.: Free products of topological groups which are \(k_\omega \)-spaces. Trans. Am. Math. Soc. 191, 61–73 (1974)

    MATH  Google Scholar 

  32. Pugh, C., Shub, M., Wilkinson, A.: Hölder foliations, revisited. J. Mod. Dyn. 6(1), 79–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  34. Rodriguez-Hertz, F., Wang, Z.: Global rigidity of higher rank abelian Anosov algebraic actions. Invent. Math. 198(1), 165–209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Steinberg, R.: Générateurs, relations et revêtements de groupes algébriques. In: Colloque sur la Théorie des Groupes Algébriques, Bruxelles, pp. 113–127 (1962)

  36. Steinberg, R.: Lecture Notes on Chevalley Groups. Yale University, New Haven (1967)

    Google Scholar 

  37. Varadarajan, V.: Lie Groups, Lie Algebras, and Their Representations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  38. Vinhage, K.: On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. J. Mod. Dyn. 9(01), 25–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhenqi Jenny Wang: Local rigidity of partially hyperbolic actions. J. Mod. Dyn. 4(2), 271–327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhenqi Jenny Wang: New cases of differentiable rigidity for partially hyperbolic actions: symplectic groups and resonance directions. J. Mod. Dyn. 4(4), 585–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their mutual advisor Anatole Katok for his introduction of the problem and valuable input and encouragement, as well as Aaron Brown, Ralf Spatzier and Federico Rodriguez-Hertz for helpful discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqi Jenny Wang.

Additional information

K. Vinhage: Based on research supported by NSF Grant DMS-1604796. Z. J. Wang: Based on research supported by NSF Grant DMS-1346876.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinhage, K., Wang, Z.J. Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method. Geom Dedicata 200, 385–439 (2019). https://doi.org/10.1007/s10711-018-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0379-5

Keywords

Mathematics Subject Classification