Skip to main content
Log in

A condition that prevents groups from acting fixed point free on cube complexes

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We describe a group theoretic condition which ensures that any strongly simplicial action of a group satisfying this condition on a CAT\((0)\) cube complex has a global fixed point. In particular, we show that this fixed point criterion is satisfied by Aut\((F_n)\), the automorphism group of a free group of rank n. For SAut\((F_n)\), the unique subgroup of index two in Aut\((F_n)\), we obtain a similar result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogopolski, O.: Arboreal decomposability of groups of automorphisms of a free groups. Algebra Logic 26(2), 79–91 (1987)

    Article  Google Scholar 

  2. Bridson, M., Vogtmann, K.: Automorphism groups of free groups, surface groups and free abelian groups. In: Proceedings of Symposia in Pure Mathematics 74 (2006), 301–316, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. MR2264548 (2008g:20091)

  3. Bridson, M., Vogtmann, K.: Actions of automorphism groups of free groups on homology spheres and acyclic manifolds. Comment. Math. Helv. 86(1), 73–90 (2011). MR2745276 (2011j:20104)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], p. 319. Springer-Verlag, Berlin (1999). MR1744486 (2000k:53038)

  5. Cornulier, Y.: Group Actions with Commensurated Subsets, Wallings and Cubings. ArXiv:math/1302.5982

  6. Debrunner, H.E.: Helly type theorems derived from basic singular homology. Am. Math. Mon. 77, 375–380 (1970). MR0261443 (41 #6056)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farb, B.: Group actions and Helly’s theorem. Adv. Math. 222(5), 1574–1588 (2009). MR2555905 (2011c:20076)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerasimov, V.: Fixed-point-free actions on cubings. Sib. Adv. Math. 8(3), 36–58 (1998)

    MathSciNet  Google Scholar 

  9. Kaluba, M., Nowak, P.W., Ozawa, N.: \(Aut(F_5)\) has property (T). arXiv:1712.07167v1 (2017)

  10. Kleiner, B.: The local structure of length spaces with curvature bounded above. Math. Z. 231(3), 409–456 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Niblo, G., Reeves, L.: Groups acting on \({{\rm CAT}}(0)\) cube complexes. Geom. Topol. 1, 1–7 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Niblo, G., Reeves, L.: Coxeter groups act on a \({{\rm CAT}}(0)\) cube complexes. J. Group Theory 6, 399–413 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Roller, M.A.: Poc Sets, Median Algebras and Group Actions. An Extended Study of Dunwoody’s construction and Sageev’s Theorem. Habilitationschrift, Regensberg (1998)

    Google Scholar 

  14. Serre, J.P.: Amalgames et points fixes. In: Proc. Internat. Conf. Theory of Groups, Canberra, pp. 633–640 (1973)

  15. Serre, J.P.: Arbres, Amalgames, \({\rm SL}_2\), Asterisque no. 46, Soc. Math. France (1977)

  16. Varghese, O.: Wirkungen von Aut\((F_n)\), Diploma Thesis at WWU (2010)

  17. Varghese, O.: Fixed points for actions of \({\rm Aut}(F_n)\) on \({\rm CAT}(0)\) spaces. Münster J. Math. 7 (2014)

Download references

Acknowledgements

The author would like to thank Yves Cornulier and Genevois Anthony for their comments concerning completeness in Proposition 2.2 and the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Varghese.

Additional information

Research partially supported by SFB 878.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, O. A condition that prevents groups from acting fixed point free on cube complexes. Geom Dedicata 200, 85–91 (2019). https://doi.org/10.1007/s10711-018-0361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0361-2

Keywords

Mathematics Subject Classification

Navigation