Abstract
We describe a group theoretic condition which ensures that any strongly simplicial action of a group satisfying this condition on a CAT\((0)\) cube complex has a global fixed point. In particular, we show that this fixed point criterion is satisfied by Aut\((F_n)\), the automorphism group of a free group of rank n. For SAut\((F_n)\), the unique subgroup of index two in Aut\((F_n)\), we obtain a similar result.
Similar content being viewed by others
References
Bogopolski, O.: Arboreal decomposability of groups of automorphisms of a free groups. Algebra Logic 26(2), 79–91 (1987)
Bridson, M., Vogtmann, K.: Automorphism groups of free groups, surface groups and free abelian groups. In: Proceedings of Symposia in Pure Mathematics 74 (2006), 301–316, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. MR2264548 (2008g:20091)
Bridson, M., Vogtmann, K.: Actions of automorphism groups of free groups on homology spheres and acyclic manifolds. Comment. Math. Helv. 86(1), 73–90 (2011). MR2745276 (2011j:20104)
Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], p. 319. Springer-Verlag, Berlin (1999). MR1744486 (2000k:53038)
Cornulier, Y.: Group Actions with Commensurated Subsets, Wallings and Cubings. ArXiv:math/1302.5982
Debrunner, H.E.: Helly type theorems derived from basic singular homology. Am. Math. Mon. 77, 375–380 (1970). MR0261443 (41 #6056)
Farb, B.: Group actions and Helly’s theorem. Adv. Math. 222(5), 1574–1588 (2009). MR2555905 (2011c:20076)
Gerasimov, V.: Fixed-point-free actions on cubings. Sib. Adv. Math. 8(3), 36–58 (1998)
Kaluba, M., Nowak, P.W., Ozawa, N.: \(Aut(F_5)\) has property (T). arXiv:1712.07167v1 (2017)
Kleiner, B.: The local structure of length spaces with curvature bounded above. Math. Z. 231(3), 409–456 (1999)
Niblo, G., Reeves, L.: Groups acting on \({{\rm CAT}}(0)\) cube complexes. Geom. Topol. 1, 1–7 (1997)
Niblo, G., Reeves, L.: Coxeter groups act on a \({{\rm CAT}}(0)\) cube complexes. J. Group Theory 6, 399–413 (2003)
Roller, M.A.: Poc Sets, Median Algebras and Group Actions. An Extended Study of Dunwoody’s construction and Sageev’s Theorem. Habilitationschrift, Regensberg (1998)
Serre, J.P.: Amalgames et points fixes. In: Proc. Internat. Conf. Theory of Groups, Canberra, pp. 633–640 (1973)
Serre, J.P.: Arbres, Amalgames, \({\rm SL}_2\), Asterisque no. 46, Soc. Math. France (1977)
Varghese, O.: Wirkungen von Aut\((F_n)\), Diploma Thesis at WWU (2010)
Varghese, O.: Fixed points for actions of \({\rm Aut}(F_n)\) on \({\rm CAT}(0)\) spaces. Münster J. Math. 7 (2014)
Acknowledgements
The author would like to thank Yves Cornulier and Genevois Anthony for their comments concerning completeness in Proposition 2.2 and the referee for many helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Research partially supported by SFB 878.
Rights and permissions
About this article
Cite this article
Varghese, O. A condition that prevents groups from acting fixed point free on cube complexes. Geom Dedicata 200, 85–91 (2019). https://doi.org/10.1007/s10711-018-0361-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-018-0361-2