Skip to main content
Log in

Convergence of Siegel–Veech constants

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We show that for any weakly convergent sequence of ergodic \(SL_2(\mathbb {R})\)-invariant probability measures on a stratum of unit-area translation surfaces, the corresponding Siegel–Veech constants converge to the Siegel–Veech constant of the limit measure. Together with a measure equidistribution result due to Eskin–Mirzakhani–Mohammadi, this yields the (previously conjectured) convergence of sequences of Siegel–Veech constants associated to Teichmüller curves in genus two. The proof uses a recurrence result closely related to techniques developed by Eskin–Masur. We also use this recurrence result to get an asymptotic quadratic upper bound, with a uniform constant depending only on the stratum, for the number of saddle connections of length at most R on a unit-area translation surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Athreya, J.S.: Quantitative recurrence and large deviations for Teichmuller geodesic flow. Geom. Dedicata 119, 121–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bainbridge, M.: Euler characteristics of Teichmüller curves in genus two. Geom. Topol. 11, 1887–2073 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bainbridge, M.: Billiards in L-shaped tables with barriers. Geom. Funct. Anal. 20(2), 299–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bainbridge, M., Smillie, J., Weiss, B.: Horocycle dynamics: new invariants and eigenform loci in the stratum H(1,1). arXiv:1603.00808 (2016)

  5. Dozier, B.: Equidistribution of saddle connections on translation surfaces. arXiv:1705.10847 (2017)

  6. Eskin, A., Masur, H.: Asymptotic formulas on flat surfaces. Ergod. Theory Dyn. Syst. 21(2), 443–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eskin, A., Mirzakhani, M.: Invariant and stationary measures for the \(\text{SL}_{2}({\mathbb{R}})\) action on Moduli space. arXiv:1302.3320 (2013)

  8. Eskin, A., Margulis, G., Mozes, S.: Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Ann. Math. (2) 147(1), 93–141 (1998)

  9. Eskin, A., Mirzakhani, M., Mohammadi, A.: Isolation, equidistribution, and orbit closures for the \(\text{ SL }_2({\mathbb{R}})\) action on moduli space. Ann. Math. (2) 182(2), 673–721 (2015)

  10. Eskin, A., Masur, H., Schmoll, M.: Billiards in rectangles with barriers. Duke Math. J. 118(3), 427–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eskin, A., Marklof, J., Morris, D.W.: Unipotent flows on the space of branched covers of Veech surfaces. Ergod. Theory Dyn. Syst. 26(1), 129–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eskin, A., Masur, H., Zorich, A.: Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants. Publ. Math. Inst. Hautes Études Sci. 97, 61–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eskin, A., Okounkov, A.: Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials. Invent. Math. 145(1), 59–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutkin, E., Judge, C.: Affine mappings of translation surfaces: geometry and arithmetic. Duke Math. J. 103(2), 191–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lelièvre, S.: Siegel-Veech constants in \(\cal{H}(2)\). Geom. Topol. 10, 1157–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. (2) 115(1), 169–200 (1982)

  17. Masur, H.: Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, Holomorphic functions and moduli, vol. I (Berkeley, CA, 1986). Mathematical Sciences Research Institute Publications, vol. 10, pp. 215–228. Springer, New York (1988)

  18. Masur, H.: The growth rate of trajectories of a quadratic differential. Ergod. Theory Dyn. Syst. 10(1), 151–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. McMullen, C.T.: Dynamics of \(\text{ SL }_{2}({\mathbb{R}})\) over moduli space in genus two. Ann. Math. (2) 165(2), 397–456 (2007)

  20. Matheus, C., Möller, M., Yoccoz, J.-C.: A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces. Invent. Math. 202(1), 333–425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmoll, M.: On the asymptotic quadratic growth rate of saddle connections and periodic orbits on marked flat tori. Geom. Funct. Anal. 12(3), 622–649 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Veech, W.A.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. (2) 115(1), 201–242 (1982)

  23. Veech, W.A.: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math. 97(3), 553–583 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vorobets, Y.B.: Plane structures and billiards in rational polygons: the Veech alternative. Uspekhi Mat. Nau 51(5(311)), 3–42 (1996)

  25. Wright, A.: Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci. 2(1), 63–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zorich, A.: Flat Surfaces, Frontiers in Number Theory, Physics, and Geometry, vol. 1, pp. 437–583. Springer, Berlin (2006)

Download references

Acknowledgements

I would like to thank Maryam Mirzakhani, my thesis advisor, for guiding me with numerous stimulating conversations and suggestions. I am also very grateful to Alex Wright, for many helpful discussions and detailed feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Dozier.

Additional information

Supported in part by NSF Grant DGE-114747.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozier, B. Convergence of Siegel–Veech constants. Geom Dedicata 198, 131–142 (2019). https://doi.org/10.1007/s10711-018-0332-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0332-7

Keywords

Mathematics Subject Classification

Navigation