Geometriae Dedicata

, Volume 202, Issue 1, pp 387–399 | Cite as

Counting maximally broken Morse trajectories on aspherical manifolds

  • Caterina CampagnoloEmail author
  • Roman Sauer
Original Paper


We prove a lower bound on the number of maximally broken trajectories of the negative gradient flow of a Morse–Smale function on a closed aspherical manifold in terms of integral (torsion) homology.


Morse–Smale function Torsion homology Broken Morse trajectories Simplicial norm 

Mathematics Subject Classification (2010)

Primary 57R99 Secondary 55N10 



  1. 1.
    Alpert, H.: Using simplicial volume to count maximally broken Morse trajectories. Geom. Topol. 20(5), 2997–3018 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alpert, H., Katz, G.: Using simplicial volume to count multi-tangent trajectories of traversing vector fields. Geom. Dedic. 180, 323–338 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bader, U., Gelander, T., Sauer, R.: Homology and homotopy complexity in negative curvature (2017). arXiv:1612.04871 (to appear in JEMS)
  4. 4.
    Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Kluwer Texts in the Mathematical Sciences, vol. 29. Kluwer Academic Publishers Group, Dordrecht (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Barr, M.: Oriented singular homology. Theory Appl. Categ. 1(1), 1–9 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Frigerio, R., Löh, C., Pagliantini, C., Sauer, R.: Integral foliated simplicial volume of aspherical manifolds. Israel J. Math. 216(2), 707–751 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56(1982), 5–99 (1983)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 9.
    Lück, W.: \(L^2\)-Invariants: Theory and Applications to Geometry and \(K\)-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Springer, Berlin (2002)CrossRefGoogle Scholar
  10. 10.
    Qin, L.: On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds. J. Topol. Anal. 2(4), 469–526 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sauer, R.: Volume and homology growth of aspherical manifolds. Geom. Topol. 20(2), 1035–1059 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Algebra and GeometryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations