Advertisement

Geometriae Dedicata

, Volume 202, Issue 1, pp 387–399 | Cite as

Counting maximally broken Morse trajectories on aspherical manifolds

  • Caterina CampagnoloEmail author
  • Roman Sauer
Original Paper

Abstract

We prove a lower bound on the number of maximally broken trajectories of the negative gradient flow of a Morse–Smale function on a closed aspherical manifold in terms of integral (torsion) homology.

Keywords

Morse–Smale function Torsion homology Broken Morse trajectories Simplicial norm 

Mathematics Subject Classification (2010)

Primary 57R99 Secondary 55N10 

Notes

References

  1. 1.
    Alpert, H.: Using simplicial volume to count maximally broken Morse trajectories. Geom. Topol. 20(5), 2997–3018 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alpert, H., Katz, G.: Using simplicial volume to count multi-tangent trajectories of traversing vector fields. Geom. Dedic. 180, 323–338 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bader, U., Gelander, T., Sauer, R.: Homology and homotopy complexity in negative curvature (2017). arXiv:1612.04871 (to appear in JEMS)
  4. 4.
    Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Kluwer Texts in the Mathematical Sciences, vol. 29. Kluwer Academic Publishers Group, Dordrecht (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Barr, M.: Oriented singular homology. Theory Appl. Categ. 1(1), 1–9 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Frigerio, R., Löh, C., Pagliantini, C., Sauer, R.: Integral foliated simplicial volume of aspherical manifolds. Israel J. Math. 216(2), 707–751 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56(1982), 5–99 (1983)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 9.
    Lück, W.: \(L^2\)-Invariants: Theory and Applications to Geometry and \(K\)-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Springer, Berlin (2002)CrossRefGoogle Scholar
  10. 10.
    Qin, L.: On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds. J. Topol. Anal. 2(4), 469–526 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sauer, R.: Volume and homology growth of aspherical manifolds. Geom. Topol. 20(2), 1035–1059 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Algebra and GeometryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations