Skip to main content
Log in

Topological obstructions for submanifolds in low codimension

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove integral curvature bounds in terms of the Betti numbers for compact submanifolds of the Euclidean space with low codimension. As an application, we obtain topological obstructions for \(\delta \)-pinched immersions. Furthermore, we obtain intrinsic obstructions for minimal submanifolds in spheres with pinched second fundamental form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The mean curvature is given by \(H=\Vert {\mathcal {H}}\Vert \), where \({\mathcal {H}}\) denotes the mean curvature vector field.

References

  1. Andrews, B., Baker, C.: Mean curvature flow of pinched submanifolds to spheres. J. Differ. Geom. 85(3), 357–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araújo, K.O., Tenenblat, K.: On submanifolds with parallel mean curvature vector. Kodai Math. J. 32(1), 59–76 (2009). https://doi.org/10.2996/kmj/1238594546

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbosa, E.R., Araújo, K.O.: On complete submanifolds with bounded mean curvature. J. Geom. Phys. 61(10), 1957–1964 (2011). https://doi.org/10.1016/j.geomphys.2011.05.005

    Article  MathSciNet  MATH  Google Scholar 

  4. Cartan, E.: La déformation des hypersurfaces dans l’espace conforme réel à \(n \ge 5\) dimensions. Bull. Soc. Math. France 45(57–121), 0037–9484 (1917). (French)

    MathSciNet  Google Scholar 

  5. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, vol. 9. North-Holland Publishing Co., Amsterdam (1975)

    MATH  Google Scholar 

  6. Chen, B.Y., Okumura, M.: Scalar curvature, inequality and submanifold. Proc. Am. Math. Soc. 38, 605–608 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Q.M.: Topology and Geometry of Complete Submanifolds in Euclidean Spaces, PDEs, Submani-folds and Affine Differential Geometry, vol. 69, pp. 67–80. Polish Academy of Sciences, Warsaw (2005). https://doi.org/10.4064/bc69-0-3

    Book  Google Scholar 

  8. Cheng, Q.M., Nonaka, K.: Complete submanifolds in Euclidean spaces with parallel mean curvature vector. Manuscr. Math. 105(3), 353–366 (2001). https://doi.org/10.1007/s002290100186

    Article  MathSciNet  MATH  Google Scholar 

  9. Chern, S.S., do Carmo, M., Kobayashi, S.: (1970) Minimal submanifolds of a sphere with second fundamental form of constant length, functional analysis and related fields. In: Proceedings Conference for M. Stone, University of Chicago, Chicago, IL, Springer, New York, pp. 59–75 (1968)

  10. Chern, S.S., Kuiper, N.H.: Some theorems on the isometric imbedding of compact Riemann manifolds in euclidean space. Ann. Math. 2(56), 422–430 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chern, S.S., Lashof, R.K.: On the total curvature of immersed manifolds. Am. J. Math. 79, 306–318 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chern, S.S., Lashof, R.K.: On the total curvature of immersed manifolds. II. Mich. Math. J. 5, 5–12 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. do Carmo, M., Dajczer, M., Mercuri, F.: Compact conformally flat hypersurfaces. Trans. Am. Math. Soc. 288(1), 189–203 (1985). https://doi.org/10.2307/2000435

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuiper, N.H.: Minimal total absolute curvature for immersions. Invent. Math. 10, 209–238 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Interscience Tracts in Pure and Applied Mathematics, vol. II(15). Wiley, New York (1969). (MR0238225)

    Google Scholar 

  16. Leung, P.F.: Minimal submanifolds in a sphere. Math. Z. 183(1), 75–86 (1983). https://doi.org/10.1007/BF01187216

    Article  MathSciNet  MATH  Google Scholar 

  17. Milnor, J.: Morse Theory, Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton, NJ (1963)

    MATH  Google Scholar 

  18. Moore, J.D.: Submanifolds of constant positive curvature. I. Duke Math. J. 44(2), 449–484 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moore, J.D.: Conformally flat submanifolds of Euclidean space. Math. Ann. 225(1), 89–97 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, J.D.: Codimension two submanifolds of positive curvature. Proc. Am. Math. Soc. 70(1), 72–74 (1978). https://doi.org/10.2307/2042587

    Article  MathSciNet  MATH  Google Scholar 

  21. Moore, J.D.: Euler characters and submanifolds of constant positive curvature. Trans. Am. Math. Soc. 354(9), 3815–3834 (2002). https://doi.org/10.1090/S0002-9947-02-03043-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Onti, C.-R., Vlachos, Th.: Almost conformally flat hypersurfaces. Ill. J. Math.

  23. Otsuki, T.: On the existence of solutions of a system of quadratic equations and its geometrical application. Proc. Jpn. Acad. 29, 99–100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shiohama, K.: Sphere Theorems, Handbook of Differential Geometry, vol. I, pp. 865–903. North-Holland, Amsterdam (2000). https://doi.org/10.1016/S1874-5741(00)80011-4

    Book  MATH  Google Scholar 

  25. Shiohama, K., Xu, H.: Lower bound for \(L^{n/2}\) curvature norm and its application. J. Geom. Anal. 7(3), 377–386 (1997). https://doi.org/10.1007/BF02921626.MR1674797

  26. Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds. Kyushu J. Math. 48(2), 291–306 (1994). https://doi.org/10.2206/kyushujm.48.291

    Article  MathSciNet  MATH  Google Scholar 

  27. Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds. II. Kyushu J. Math. 54(1), 103–109 (2000). https://doi.org/10.2206/kyushujm.54.103

    Article  MathSciNet  MATH  Google Scholar 

  28. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 2(88), 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smoczyk, K.: Mean Curvature Flow in Higher Codimension: Introduction and Survey. Global Differential Geometry. Springer Proceedings in Mathematics, vol. 17, pp. 231–274. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  30. Vlachos, Th: Integral curvature and topological obstructions for submanifolds. Geom. Dedic. 166, 289–305 (2013). https://doi.org/10.1007/s10711-012-9796-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Vlachos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onti, CR., Vlachos, T. Topological obstructions for submanifolds in low codimension. Geom Dedicata 196, 11–26 (2018). https://doi.org/10.1007/s10711-017-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-017-0301-6

Keywords

Mathematics Subject Classification (2010)

Navigation