Advertisement

Geometriae Dedicata

, Volume 194, Issue 1, pp 37–54 | Cite as

On height isotopy classes of embeddings in the plane of a Morse function of a circle

  • Minoru YamamotoEmail author
Original Paper
  • 79 Downloads

Abstract

Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).

Keywords

Morse function Embedding lift Height isotopy Baxter number 

Mathematics Subject Classification (2010)

Primary 57M15 Secondary 57R45 57R52 

References

  1. 1.
    Bellettini, G., Beorchia, V., Paolini, M.: Topological and variational properties of a model for the reconstruction of three-dimensional transparent images with self-occlusions. J. Math. Imaging Vis. 32, 265–291 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Felsner, S., Fusy, É., Noy, M., Orden, D.: Bijections for Baxter families and related objects. J. Combin. Theory Ser. A 118, 993–1020 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Huffman, D.A.: Impossible Objects as Nonsense Sentences, Machine Intelligence, vol. 6. American Elsevier, New York (1971)Google Scholar
  4. 4.
    Yamamoto, M.: On embedding lifts over a Morse function on a circle. RIMS Kôkyûroku Bessatsu B38, 31–43 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationHirosaki UniversityHirosakiJapan

Personalised recommendations