Advertisement

Geometriae Dedicata

, Volume 192, Issue 1, pp 327–360 | Cite as

Deforming convex real projective structures

  • Anna WienhardEmail author
  • Tengren Zhang
Original Paper
  • 288 Downloads

Abstract

In this paper we define new flows—eruption flows and internal bulging flows—on the deformation space of convex real projective structures. These flows are associated to internal parameters associated to a pair of pants decomposition.

Keywords

Convex real projective structures Flows Projective invariants Hitchin component Locally homogeneous geometric structures 

Mathematics Subject Classification

57M50 20H10 51A05 

References

  1. 1.
    Bonahon, F., Dreyer, G.: Hitchin Characters and Geodesic Laminations, Preprint arXiv:1410.0729
  2. 2.
    Bonahon, F., Dreyer, G.: Parameterizing Hitchin components. Duke Math. J. 163(15), 2935–2975 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benzécri, J.-P.: Sur les variétés localement affines et localement projectives. Bull. Soc. Math. Fr. 88, 229–332 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonahon, F., Kim, I.: The Goldman and Fock–Goncharov Coordinates for Convex Projective Structures on Surfaces, Preprint arXiv:1607.03650
  5. 5.
    Choi, S., Goldman, W.M.: Convex real projective structures on closed surfaces are closed. Proc. Am. Math. Soc 118(2), 657–661 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fock, V.V., Goncharov, A.B.: Moduli spaces of convex projective structures on surfaces. Adv. Math. 208(1), 249–273 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goldman, W.M.: Bulging Deformations of Convex \({\mathbb{RP}}^2\)-Manifolds, Preprint arXiv:1302.0777v1
  9. 9.
    Goldman, W.M.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85(2), 302 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goldman, W.M.: Convex real projective structures on compact surfaces. J. Differ. Geom. 31(3), 845 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31(3), 449–473 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kerckhoff, S.P.: The Nielsen realization problem. Ann. Math. (2) 117(2), 235–265 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kuiper, N.H.: On Convex Locally-Projective Spaces. Convegno Internazionale di Geometria Differenziale (1953). Edizioni Cremonese, Rome, 1954, pp. 200–213Google Scholar
  14. 14.
    Labourie, F.: Flat projective structures on surfaces and cubic holomorphic differentials. Pure Appl. Math. Q. 3 (2007), no. 4, Special Issue: In honor of Grigory Margulis. Part 1, 1057–1099Google Scholar
  15. 15.
    Li, Q.: Teichmüller space is totally geodesic in Goldman space. Asian J. Math. 20(1), 21–46 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Loftin, J.C.: Affine spheres and convex \({\mathbb{RP}}^n\)-manifolds. Am. J. Math. 123(2), 255–274 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Thurston, W.P.: Earthquakes in two-dimensional hyperbolic geometry. In: Low-Dimensional Topology and Kleinian Groups (Coventry/Durham, 1984), London Mathematical Society Lecture Note Series, vol. 112, pp. 91–112. Cambridge University Press, Cambridge (1986)Google Scholar
  18. 18.
    Zhang, T.: The degeneration of convex \(\mathbb{RP}^2\) structures on surfaces. Proc. Lond. Math. Soc. 111(5), 967–1012 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, T.: Degeneration of Hitchin representations along internal sequences. Geom. Funct. Anal. 25(5), 1588–1645 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutRuprecht-Karls Universität HeidelbergHeidelbergGermany
  2. 2.Heidelberg Institute for Theoretical Studies, HITS gGmbHHeidelbergGermany
  3. 3.Mathematics DepartmentCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations