Geometriae Dedicata

, Volume 191, Issue 1, pp 1–35 | Cite as

Hausdorff dimension of limit sets

  • Laurent Dufloux
Original Paper


We exhibit a class of Schottky subgroups of \(\mathbf {PU}(1,n)\) (\(n \ge 2\)) which we call well-positioned and show that the Hausdorff dimension of the limit set \(\Lambda _\Gamma \) associated with such a subgroup \(\Gamma \), with respect to the spherical metric on the boundary of complex hyperbolic n-space, is equal to the growth exponent \(\delta _\Gamma \). For general \(\Gamma \) we establish (under rather mild hypotheses) a lower bound involving the dimension of the Patterson–Sullivan measure along boundaries of complex geodesics. Our main tool is a version of the celebrated Ledrappier–Young theorem.


Hausdorff dimension Non-conformal repellers Complex hyperbolic geometry Dimension theory 

Mathematics Subject Classification

37C45 28A80 53D25 37D40 


  1. 1.
    Balogh, Z.M., Hoefer-Isenegger, R., Tyson, J.T.: Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group. Ergod. Theory Dyn. Syst. 26(3), 621–651 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Balogh, Z.M., Tyson, J.T., Warhurst, B.: Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups. Adv. Math. 220(2), 560–619 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Becker, H., Kechris, A.S.: The Descriptive Set Theory of Polish Group Actions. London Mathematical Society Lecture Note Series, vol. 232. Cambridge University Press, Cambridge (1996)Google Scholar
  4. 4.
    Benoist, Y., Quint, J.-F.: Mesures stationnaires et fermés invariants des espaces homogènes. Ann. Math. (2) 174(2), 1111–1162 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bishop, C.J., Jones, P.W.: Hausdorff dimension and Kleinian groups. Acta Math. 179(1), 1–39 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, J., Pesin, Y.: Dimension of non-conformal repellers: a survey. Nonlinearity 23(4), R93–R114 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Corlette, K.: Hausdorff dimensions of limit sets. I. Invent. Math. 102(3), 521–541 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Dufloux, L.: Hausdorff Dimension of Limit Sets. Theses, Université Paris 13, October 2015.
  9. 9.
    Dufloux, L.: Projections of Patterson–Sullivan measures and the dichotomy of Mohammadi-Oh. preprint (2016)Google Scholar
  10. 10.
    Einsiedler, M., Lindenstrauss, E.: Diagonal actions on locally homogeneous spaces. In: Homogeneous Flows, Moduli Spaces and Arithmetic, volume 10 of Clay Math. Proc., pp. 155–241. Am. Math. Soc., Providence, RI (2010)Google Scholar
  11. 11.
    Falconer, K.J.: The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Philos. Soc. 103(2), 339–350 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Goldman, W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1999). Oxford Science PublicationsGoogle Scholar
  13. 13.
    Hersonsky, S., Paulin, F.: Diophantine approximation for negatively curved manifolds. Math. Z. 241(1), 181–226 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hochman, M.: Dynamics on fractals and fractal distributions. ArXiv e-prints, August (2010)Google Scholar
  15. 15.
    Käenmäki, A., Rajala, T., Suomala, V.: Local homogeneity and dimensions of measures. ArXiv e-prints, March (2010)Google Scholar
  16. 16.
    Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. Math. (2) 122(3), 540–574 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Ledrappier, F., Xie, J.-S.: Vanishing transverse entropy in smooth ergodic theory. Ergod. Theory Dyn. Syst. 31(4), 1229–1235 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Ledrappier, F.: Entropie et principe variationnel pour le flot géodésique en courbure négative pincée. In: Géométrie ergodique, volume 43 of Monogr. Enseign. Math., pp. 117–144. Enseignement Math., Geneva (2013)Google Scholar
  19. 19.
    Ledrappier, F., Lindenstrauss, E.: On the projections of measures invariant under the geodesic flow. Int. Math. Res. Not. 9, 511–526 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Margulis, G.A., Tomanov, G.M.: Invariant measures for actions of unipotent groups over local fields on homogeneous spaces. Invent. Math. 116(1–3), 347–392 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). Fractals and rectifiabilityGoogle Scholar
  22. 22.
    Mohammadi, A., Oh, H.: Ergodicity of unipotent flows and Kleinian groups. J. Am. Math. Soc. 28(2), 531–577 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Paulin, F.: On the critical exponent of a discrete group of hyperbolic isometries. Differ. Geom. Appl. 7(3), 231–236 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Roblin, T.: Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.), (95):vi+96 (2003)Google Scholar
  25. 25.
    Stratmann, B.O.: The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones. In: Fractal Geometry and Stochastics III, Volume 57 of Progr. Probab., pp. 93–107. Birkhäuser, Basel (2004)Google Scholar
  26. 26.
    Wingren, P.: Concerning a real-valued continuous function on the interval with graph of Hausdorff dimension \(2\). Enseign. Math. (2) 41(1–2), 103–110 (1995)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Winter, D.: Mixing of frame flow for rank one locally symmetric spaces and measure classification. ArXiv e-prints, March (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Oulun YliopistoOuluFinland

Personalised recommendations