Geometriae Dedicata

, Volume 189, Issue 1, pp 177–184 | Cite as

Weyl–Einstein structures on K-contact manifolds

Original Paper

Abstract

We show that a compact K-contact manifold \((M,g,\xi )\) has a closed Weyl–Einstein connection compatible with the conformal structure [g] if and only if it is Sasaki–Einstein.

Keywords

Weyl-Einstein K-contact Sasaki 

Mathematics Subject Classification (2010)

53C25 53D10 53A30 

References

  1. 1.
    Apostolov, V., Draghici, T., Moroianu, A.: The odd-dimensional Goldberg conjecture. Math. Nachr. 279, 948–952 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Besse, A.L.: Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete vol. 10. Springer, Berlin (1987)Google Scholar
  3. 3.
    Blair, D.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser (2002)Google Scholar
  4. 4.
    Boyer, C., Galicki, K.: Einstein manifolds and contact geometry. Proc. Am. Math. Soc. 129, 2419–2430 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Calderbank, D.M.J., Pedersen, H.: Einstein–Weyl Geometry. Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA, pp. 387–423 (1999)Google Scholar
  6. 6.
    Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gauduchon, P.: Structures de Weyl–Einstein, espaces de twisteurs et variétés de type \(S^1\times S^3\). J. Reine Angew. Math. 469, 1–50 (1995)MathSciNetMATHGoogle Scholar
  8. 8.
    Gosh, A.: Einstein–Weyl structures on contact metric manifolds. Ann. Glob. Anal. Geom. 35, 431–441 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lichnerowicz, A.: Géométrie des groupes de transformations, Travaux et recherches mathématiques 3, Dunod (1958)Google Scholar
  10. 10.
    Matzeu, P.: Closed Einstein–Weyl structures on compact Sasakian and cosymplectic manifolds. Proc. Edinb. Math. Soc. 54, 149–160 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Moroianu, A., Semmelmann, U.: Twistor forms on Riemannian products. J. Geom. Phys. 58, 134–1345 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nagano, T.: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Jpn. 11, 10–14 (1959)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nagano, T., Yano, K.: Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. 69, 451–461 (1959)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Obata, M.: Certain conditions for a Riemnannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)CrossRefMATHGoogle Scholar
  15. 15.
    Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geom. 6, 247–258 (1971)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tod, K.P.: Compact 3-dimensional Einstein–Weyl structures. J. Lond. Math. Soc. 45(2), 341–351 (1992)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245, 503–527 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.CMLS, École Polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance
  2. 2.Laboratoire de Mathématiques d’OrsayUniversité Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance

Personalised recommendations