Abstract
The main result of this paper is the conformal flatness of real-analytic compact Lorentz manifolds of dimension at least three admitting a conformal essential action of a Lie group locally isomorphic to \({{\mathrm{PSL}}}(2,\mathbf {R})\). It is established by using a general result on local isometries of real-analytic rigid geometric structures. As corollary, we deduce the same conclusion for conformal essential actions of connected semi-simple Lie groups on real-analytic compact Lorentz manifolds. This work is a contribution to the understanding of the Lorentzian version of a question asked by A. Lichnerowicz.
Similar content being viewed by others
Notes
The Jordan decomposition is valid in algebraic groups. Here, \(P \subset {{\mathrm{PO}}}(2,n)\) is not algebraic. Nevertheless, it is the quotient of an algebraic subgroup of O(2, n) by \(\{\pm {{\mathrm{id}}}\}\). So, when we speak of algebraic properties of elements or subgroups of P, we deal with the lifts of these elements or subgroups to O(2, n).
References
Alekseevsky, D.: Self-similar Lorentzian manifolds. Ann. Glob. Anal. Geom. 3(1), 59–84 (1985)
Bader, U., Frances, C., Melnick, K.: An embedding theorem for automorphism groups of Cartan geometries. Geom. Funct. Anal. 19(2), 333–355 (2009)
Bader, U., Nevo, A.: Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds. J. Differ. Geom. 60(3), 355–387 (2002)
Benoist, I.: Orbites des structures géométriques rigides (d’après M. Gromov). Prog. Math. 145, 1–17 (1997)
Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Spinger, Berlin (1987)
Čap, A., Slovák, J.: Parabolic geometries I: background and general theory. Mathematical Surveys and Monographs, vol. 154. American Mathematical Society (2009)
Feres, R.: Rigid geometric structures and actions of semisimple Lie groups. Panoramas et Synthèse, vol. 13, pp. 121–167. Publications de la SMF. http://smf4.emath.fr/Publications/PanoramasSyntheses/2002/13/html/smf_pano-synth_13_121-167.html (2002)
Ferrand, J.: Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz. Mém. Acad. Roy. Belg. Cl. Sci. Mém. Coll. in-8 39 (1971)
Ferrand, J.: The action of conformal transformations on a Riemannian manifold. Math. Ann. 304(2), 277–291 (1996)
Frances, C.: Des contre-exemples au théorème de Ferrand-Obata en géométrie Lorentzienne conforme. Math. Ann. 332(1), 103–119 (2005)
Frances, C.: Causal conformal vector fields and singularities of twistor spinors. Ann. Glob. Anal. Geom. 32(4), 277–295 (2007)
Frances, C.: About pseudo-Riemannian Lichnerowicz conjecture. Preprint arXiv:1211.0635 (2012)
Frances, C.: Local dynamics of conformal vector fields. Geom. Dedic. 158(1), 35–39 (2012)
Frances, C., Melnick, K.: Formes normales pour les champs conformes pseudo-riemanniens. Bull. de la SMF 141(3), 377–421 (2013)
Frances, C., Zeghib, A.: Some remarks on conformal pseudo-riemannian actions of semi-simple Lie groups. Math. Res. Lett. 12(1), 49–56 (2005)
Gromov, M.: Rigid transformations groups. Géom. Différ. 33, 65–139 (1988)
Juhl, A.: Families of conformally covariant differential operators, Q-curvature and holography. Progress in Mathematics, vol. 275. Birkhäuser, Basel (2009)
Kobayashi, S.: Transformation Groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1972)
Kühnel, W., Rademacher, H.B.: Essential conformal fields in pseudo-Riemannian geometry I. J. Math. Pures Appl. 74(9), 453–481 (1995)
Kühnel, W., Rademacher, H.B.: Essential conformal fields in pseudo-Riemannian geometry II. J. Math. Sci. Univ. Tokyo 4(3), 649–662 (1997)
Lafontaine, J.: Conformal geometry from the Riemannian viewpoint. In: Conformal Geometry, Aspects of Math. E12, Friedr. Vieweg, Braunsweig, Bonn, 1985–1986 (1988)
Melnick, K.: A Frobenius theorem for Cartan geometries, with applications. L’Enseignement Mathématique (Série II) 57(1–2), 57–89 (2011)
Morris, D.W.: Ratner’s Theorems on Unipotent Flows. University of Chicago Press, Chicago. http://press.uchicago.edu/ucp/books/book/chicago/R/bo3621083.html (2005)
Morris, D.W., Zimmer, R.J.: Ergodic Theory, Groups, and Geometry: NSF-CBMS Regional Research Conferences in the Mathematical Sciences, June 22–26, 1998, University of Minnesota, vol. 109. American Mathematical Society (2008)
Obata, M.: Conformal transformations of Riemannian manifolds. J. Differ. Geom. 4, 311–333 (1970)
Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geom. 6, 247–258 (1971)
Pecastaing, V.: On two theorems about local orbits of geometric structures. Preprint arXiv:1402.5048 (2014)
Pecastaing, V.: Semi-simple Lie groups acting conformally on compact Lorentz manifolds. Preprint arXiv:1506.08693 (2015)
Sharpe, R.: Differential geometry: Cartan’s generalisation of Klein’s Erlangen program Graduate Texts in Mathematics, vol. 166. Springer, New York (1996)
Zimmer, R.J.: On the automorphism group of a compact Lorentz manifold and other geometric manifolds. Invent. Math. 83(3), 411–424 (1986)
Zimmer, R.J.: Split rank and semisimple automorphism groups of G-structures. J. Differ. Geom. 26, 169–173 (1987)
Zimmer, R.J.: Automorphism groups and fundamental groups of geometric manifolds. Proc. Symp. Pure Math. 54, 693–710 (1993)
Acknowledgements
This work has been done during my PhD and I would like to deeply thank my advisor, Charles Frances, for his constant support.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been finalized while the author was supported by a DAAD grant.
Rights and permissions
About this article
Cite this article
Pecastaing, V. Essential conformal actions of \({{\mathrm{PSL}}}(2,\mathbf {R})\) on real-analytic compact Lorentz manifolds. Geom Dedicata 188, 171–194 (2017). https://doi.org/10.1007/s10711-016-0212-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-016-0212-y