Skip to main content
Log in

Essential conformal actions of \({{\mathrm{PSL}}}(2,\mathbf {R})\) on real-analytic compact Lorentz manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The main result of this paper is the conformal flatness of real-analytic compact Lorentz manifolds of dimension at least three admitting a conformal essential action of a Lie group locally isomorphic to \({{\mathrm{PSL}}}(2,\mathbf {R})\). It is established by using a general result on local isometries of real-analytic rigid geometric structures. As corollary, we deduce the same conclusion for conformal essential actions of connected semi-simple Lie groups on real-analytic compact Lorentz manifolds. This work is a contribution to the understanding of the Lorentzian version of a question asked by A. Lichnerowicz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Jordan decomposition is valid in algebraic groups. Here, \(P \subset {{\mathrm{PO}}}(2,n)\) is not algebraic. Nevertheless, it is the quotient of an algebraic subgroup of O(2, n) by \(\{\pm {{\mathrm{id}}}\}\). So, when we speak of algebraic properties of elements or subgroups of P, we deal with the lifts of these elements or subgroups to O(2, n).

References

  1. Alekseevsky, D.: Self-similar Lorentzian manifolds. Ann. Glob. Anal. Geom. 3(1), 59–84 (1985)

    Article  MathSciNet  Google Scholar 

  2. Bader, U., Frances, C., Melnick, K.: An embedding theorem for automorphism groups of Cartan geometries. Geom. Funct. Anal. 19(2), 333–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bader, U., Nevo, A.: Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds. J. Differ. Geom. 60(3), 355–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benoist, I.: Orbites des structures géométriques rigides (d’après M. Gromov). Prog. Math. 145, 1–17 (1997)

  5. Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Spinger, Berlin (1987)

    Book  Google Scholar 

  6. Čap, A., Slovák, J.: Parabolic geometries I: background and general theory. Mathematical Surveys and Monographs, vol. 154. American Mathematical Society (2009)

  7. Feres, R.: Rigid geometric structures and actions of semisimple Lie groups. Panoramas et Synthèse, vol. 13, pp. 121–167. Publications de la SMF. http://smf4.emath.fr/Publications/PanoramasSyntheses/2002/13/html/smf_pano-synth_13_121-167.html (2002)

  8. Ferrand, J.: Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz. Mém. Acad. Roy. Belg. Cl. Sci. Mém. Coll. in-8 39 (1971)

  9. Ferrand, J.: The action of conformal transformations on a Riemannian manifold. Math. Ann. 304(2), 277–291 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frances, C.: Des contre-exemples au théorème de Ferrand-Obata en géométrie Lorentzienne conforme. Math. Ann. 332(1), 103–119 (2005)

    Article  MathSciNet  Google Scholar 

  11. Frances, C.: Causal conformal vector fields and singularities of twistor spinors. Ann. Glob. Anal. Geom. 32(4), 277–295 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frances, C.: About pseudo-Riemannian Lichnerowicz conjecture. Preprint arXiv:1211.0635 (2012)

  13. Frances, C.: Local dynamics of conformal vector fields. Geom. Dedic. 158(1), 35–39 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frances, C., Melnick, K.: Formes normales pour les champs conformes pseudo-riemanniens. Bull. de la SMF 141(3), 377–421 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Frances, C., Zeghib, A.: Some remarks on conformal pseudo-riemannian actions of semi-simple Lie groups. Math. Res. Lett. 12(1), 49–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gromov, M.: Rigid transformations groups. Géom. Différ. 33, 65–139 (1988)

  17. Juhl, A.: Families of conformally covariant differential operators, Q-curvature and holography. Progress in Mathematics, vol. 275. Birkhäuser, Basel (2009)

  18. Kobayashi, S.: Transformation Groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1972)

  19. Kühnel, W., Rademacher, H.B.: Essential conformal fields in pseudo-Riemannian geometry I. J. Math. Pures Appl. 74(9), 453–481 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Kühnel, W., Rademacher, H.B.: Essential conformal fields in pseudo-Riemannian geometry II. J. Math. Sci. Univ. Tokyo 4(3), 649–662 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Lafontaine, J.: Conformal geometry from the Riemannian viewpoint. In: Conformal Geometry, Aspects of Math. E12, Friedr. Vieweg, Braunsweig, Bonn, 1985–1986 (1988)

  22. Melnick, K.: A Frobenius theorem for Cartan geometries, with applications. L’Enseignement Mathématique (Série II) 57(1–2), 57–89 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morris, D.W.: Ratner’s Theorems on Unipotent Flows. University of Chicago Press, Chicago. http://press.uchicago.edu/ucp/books/book/chicago/R/bo3621083.html (2005)

  24. Morris, D.W., Zimmer, R.J.: Ergodic Theory, Groups, and Geometry: NSF-CBMS Regional Research Conferences in the Mathematical Sciences, June 22–26, 1998, University of Minnesota, vol. 109. American Mathematical Society (2008)

  25. Obata, M.: Conformal transformations of Riemannian manifolds. J. Differ. Geom. 4, 311–333 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geom. 6, 247–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pecastaing, V.: On two theorems about local orbits of geometric structures. Preprint arXiv:1402.5048 (2014)

  28. Pecastaing, V.: Semi-simple Lie groups acting conformally on compact Lorentz manifolds. Preprint arXiv:1506.08693 (2015)

  29. Sharpe, R.: Differential geometry: Cartan’s generalisation of Klein’s Erlangen program Graduate Texts in Mathematics, vol. 166. Springer, New York (1996)

  30. Zimmer, R.J.: On the automorphism group of a compact Lorentz manifold and other geometric manifolds. Invent. Math. 83(3), 411–424 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zimmer, R.J.: Split rank and semisimple automorphism groups of G-structures. J. Differ. Geom. 26, 169–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zimmer, R.J.: Automorphism groups and fundamental groups of geometric manifolds. Proc. Symp. Pure Math. 54, 693–710 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been done during my PhD and I would like to deeply thank my advisor, Charles Frances, for his constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Pecastaing.

Additional information

This work has been finalized while the author was supported by a DAAD grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecastaing, V. Essential conformal actions of \({{\mathrm{PSL}}}(2,\mathbf {R})\) on real-analytic compact Lorentz manifolds. Geom Dedicata 188, 171–194 (2017). https://doi.org/10.1007/s10711-016-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-016-0212-y

Keywords

Mathematics Subject Classification (2010)

Navigation