Skip to main content
Log in

A Gauss–Bonnet formula for moduli spaces of Riemann surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove a Gauss–Bonnet theorem for (finite coverings of) moduli spaces of Riemann surfaces endowed with the McMullen metric. The proof uses properties of an exhaustion of moduli spaces by compact submanifolds with corners and the Gauss–Bonnet formula of Allendoerfer and Weil for Riemannian polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey, W.J.: Boundary structure of the modular group, In: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State University New York, Stony Brook, 1978), Annals of Mathematical Study, vol. 97, pp. 245–251. Princeton University Press, Princeton (1981)

  2. Harer, J.L.: The cohomology of the moduli space of curves. In: Theory of Moduli (Montecatini Terme, 1985), Lecture Notes in Math, vol. 1337, pp. 138–221. Springer, Berlin (1988)

  3. Ivanov, N.V.: Complexes of curves and the Teichmüller modular group. Rus. Math. Surv. 42, 55–107 (1987)

    Article  MATH  Google Scholar 

  4. Ivanov, N.V.: Mapping class groups. In: Handbook of geometric topology, pp. 523–633. North-Holland, Amsterdam (2002)

  5. Farb, B., Ji, L., Leuzinger, E., Müller, W.: Arithmetic groups vs. mapping class groups: similarities, analogies and differences, Abstracts from the workshop held at MFO June 5–11, 2011. Oberwolfach Rep. 8, 1637–1708 (2011)

    Article  MathSciNet  Google Scholar 

  6. Farb, B., Lubotzky, A., Minski, Y.: Rank-1 phenomena for mapping class groups. Duke Math. J. 106, 581–597 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ji, L.: A tale of two groups: arithmetic groups and mapping class groups. In: Handbook of Teichmüller theory, Vol. III, pp. 157–295. IRMA Lectures in Mathematics and Theoretical Physics, vol. 17. European Mathematical Society, Zürich (2012)

  8. Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85, 457–485 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harder, G.: A Gauss–Bonnet formula for discrete arithmetically defined groups. Ann. sci. Éc. Norm. Sup. 4, 409–455 (1971)

    MathSciNet  MATH  Google Scholar 

  10. Serre, J.-P.: Arithmetic groups, In: Homological group theory, London Mathematical Society LNS, vol. 36, pp. 105–136. Cambridge University Press (1979)

  11. Leuzinger, E.: Reduction theory for mapping class groups and applications to moduli spaces. J. Reine Angew. Math. 649, 11–31 (2010)

    MathSciNet  MATH  Google Scholar 

  12. McMullen, C.T.: The moduli space of Riemann surfaces is Kähler hyperbolic. Ann. Math. 151, 327–357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Allendoerfer, C.B., Weil, A.: The Gauss–Bonnet theorem for Riemannian polyhedra. Trans. Am. Math. Soc. 53, 101–129 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chern, S.S.: A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math. 45, 747–752 (1944)

    Article  MATH  Google Scholar 

  15. Spivak, M.: A comprehensive Introduction to Differential Geometry, vol. 5. Publish or perish, Berkeley (1979)

    Google Scholar 

  16. Cheeger, J., Gromov, M.: On the characteristic numbers of complete manifolds of bounded curvature and finite volume. In: Chavel, I., Farkas, H.M. (eds.) Differential geometry and complex analysis, pp. 115–154. Springer, Berlin (1985)

  17. Cheeger, J., Gromov, M.: Bounds on the von Neumann dimension of \(L_2\)-cohomology and the Gauss-Bonnet theorem for open manifolds. J. Diff. Geom. 21, 1–39 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Cheeger, J., Gromov, M.: Chopping riemannian manifolds, In: Lawson, B., Tenenblat, K. (eds.) A Symposium in Honour of M. do Carmo Pitman Monographs and Surveys in Pure and Applied Mathematics. vol. 52, pp. 85–94. New York (1991)

  19. Gromov, M.: Volume and bounded cohomology. Publ. Math. IHES 56, 5–100 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Leuzinger, E.: On the Gauss–Bonnet formula for locally symmetric spaces of noncompact type. L’Ens. Math. 42, 201–214 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Leuzinger, E.: On polyhedral retracts and compactifications of locally symmetric spaces. Diff. Geom. Appl. 20, 293–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saper, L.: Tilings and finite energy retractions of locally symmetric spaces. Comment. Math. Helv 72, 167–202 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ivanov, N.V.: Subgroups of Teichmüller modular groups. In: Translations of Mathematical Monographs, Vol. 115. American Mathematical Society, Providence, RI (1992)

  24. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces I. J. Diff. Geom. 68, 571–637 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces II. J. Diff. Geom. 69, 161–216 (2005)

    MathSciNet  Google Scholar 

  26. Liu, K., Sun, X., Yau, S.-T.: Recent developments on the geometry of the Teichmüller and moduli spaces of Riemann surfaces. Surv. Differ. Geom. 14, 221–259 (2009)

    Article  MathSciNet  Google Scholar 

  27. Douady, A., Hérault, L.: Arrondissement des variétés à coins, appendix of [4]. 484–489

  28. McMullen, C.T.: The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces. preprint (2013)

  29. Leuzinger, E.: Tits geometry, arithmetic groups, and the proof of a conjecture of Siegel. J. Lie Theory 14, 317–338 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Buser, P.: Geometry and spectra of compact Riemann surfaces. In: Progress in Math. vol. 106, Birkhäuser (1992)

  31. Abikoff, W.: The real analytic theory of Teichmüller space. In: Lecture Notes in Mathematics, vol. 820, Springer (1976)

  32. Wolpert, S.A.: Geometry of the Weil-Petersson completion of Teichmüller space. In: Surveys in Differential Geometry, Vol. VIII (Boston, MA, 2002), pp. 357–393. Int. Press, Somerville, MA (2003)

  33. Wolpert, S.A.: Behaviour of geodesic length functions on Teichmüller space. J. Diff. Geom. 79, 277–334 (2008)

    MathSciNet  MATH  Google Scholar 

  34. O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  35. Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. Harvey, W.J.: Remarks on the curve complex: classification of surface homeomorphisms, In: Kleinian Groups and Hyperblic 3-Manifolds, London Mathematical Society LNS, vol. 299, pp. 165–179. Cambridge University Press (2003)

Download references

Acknowledgments

I would like thank C.T. McMullen for helpful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Leuzinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuzinger, E. A Gauss–Bonnet formula for moduli spaces of Riemann surfaces. Geom Dedicata 180, 373–383 (2016). https://doi.org/10.1007/s10711-015-0106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0106-4

Keywords

Mathematics Subject Classification (2000)

Navigation