Skip to main content
Log in

Submanifolds with homothetic Gauss map in codimension two

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let \(f{:}\;M^n\rightarrow \mathbb {R}^{n+p}\) be an isometric immersion of an n-dimensional Riemannian manifold \(M^n\) into the (\(n+p\))-dimensional Euclidean space. Its Gauss map \(\phi {:}\;M^n\rightarrow G_n(\mathbb {R}^{n+p})\) into the Grassmannian \(G_n(\mathbb {R}^{n+p})\) is defined by assigning to every point of \(M^n\) its tangent space, considered as a vector subspace of \(\mathbb {R}^{n+p}\). The third fundamental form \(\text{ III }\) of f is the pullback of the canonical Riemannian metric on \(G_p(\mathbb {R}^{n+p})\) via \(\phi \). In this article we derive a complete classification of all those f with codimension two for which the Gauss map \(\phi \) is homothetic; i.e., \(\text{ III }\) is a constant multiple of the Riemannian metric on \(M^n\). We furthermore study and classify codimension two submanifolds with homothetic Gauss map in real space forms of nonzero curvature. To conclude, based on a strong connection established between homothetic Gauss map and minimal Einstein submanifolds, we pose a conjecture suggesting a possible complete classification of the submanifolds with the former property in arbitrary codimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndt, J., Console, S., Olmos, C.: Submanifolds and Holonomy. Chapman & Hall/CRC Research Notes in Mathematics, vol. 434. Chapman & Hall/CRC, Boca Raton, FL (2003). doi:10.1201/9780203499153

  2. Bryant, R.L.: Minimal surfaces of constant curvature in \(S^n\). Trans. Amer. Math. Soc. 290(1), 259–271 (1985). doi:10.2307/1999793

    MathSciNet  MATH  Google Scholar 

  3. Calabi, E.: Isometric imbedding of complex manifolds. Ann. Math. 2(58), 1–23 (1953)

    Article  MathSciNet  Google Scholar 

  4. Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite type, Series in Pure Mathematics, vol. 1. World Scientific, Singapore (1984)

    Book  Google Scholar 

  5. Chern, S., Osserman, R.: Complete minimal surfaces in Euclidean \(n\)-space. J. Analyse Math. 19, 15–34 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dajczer, M.: Submanifolds and Isometric Immersions, Mathematics Lecture Series, vol. 13. Publish or Perish Inc., Houston, TX (1990). (based on the notes prepared by Mauricio Antonucci. Gilvan Oliveira, Paulo Lima-Filho and Rui Tojeiro)

  7. Deprez, J.R.: Immersions of finite type of compact, homogeneous, Riemannian manifolds. ProQuest LLC, Ann Arbor, MI (1989). (Ph.D. thesis, Katholieke Universiteit Leuven, Belgium)

  8. Di Scala, A.J.: Minimal immersions of Kähler manifolds into Euclidean spaces. Bull. Lond. Math. Soc. 35(6), 825–827 (2003). doi:10.1112/S0024609303002492

    Article  MATH  Google Scholar 

  9. do Carmo, M.P., Wallach, N.R.: Minimal immersions of spheres into spheres. Ann. Math 2(93), 43–62 (1971)

    Article  MathSciNet  Google Scholar 

  10. Kenmotsu, K.: Minimal surfaces with constant curvature in \(4\)-dimensional space forms. Proc. Am. Math. Soc. 89(1), 133–138 (1983). doi:10.2307/2045079

    MathSciNet  MATH  Google Scholar 

  11. Matsuyama, Y.: Minimal Einstein submanifolds with codimension two. Tensor (N.S.) 52(1), 61–68 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Moore, J.D.: Isometric immersions of riemannian products. J. Differ. Geom. 5, 159–168 (1971)

    MATH  Google Scholar 

  13. Muto, Y.: Submanifolds of a Euclidean space with homothetic Gauss map. J. Math. Soc. Jpn. 32(3), 531–555 (1980). doi:10.2969/jmsj/03230531

    Article  MathSciNet  MATH  Google Scholar 

  14. Nölker, S.: Isometric immersions with homothetical Gauss map. Geom. Dedic. 34(3), 271–280 (1990). doi:10.1007/BF00181689

    Article  MATH  Google Scholar 

  15. Obata, M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature. J. Differ. Geom. 2, 217–223 (1968)

    MathSciNet  MATH  Google Scholar 

  16. Ohnita, Y.: The first standard minimal immersions of compact irreducible symmetric spaces. In: Differential Geometry of Submanifolds (Kyoto, 1984). Lecture Notes in Mathematics, vol. 1090, pp. 37–49. Springer, Berlin (1984). doi:10.1007/BFb0101565

  17. Osserman, R.: Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability. In: The Chern Symposium 1979 (Proceedings of International Symposium, Berkeley, CA, 1979), pp. 199–227. Springer, New York (1980)

  18. Takahashi, T.: Isometric immersion of Riemannian homogeneous manifolds. Tsukuba J. Math. 12(1), 231–233 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Wallach, N.R.: Minimal immersions of symmetric spaces into spheres. In: Symmetric Spaces (Short Courses, Washington Univ., St. Louis, MO, 1969–1970), pp. 1–40. Pure and Applied Mathematics, vol. 8. Dekker, New York (1972)

Download references

Acknowledgments

The author is grateful to his Ph.D. advisor at IMPA, Prof. Luis A. Florit, for his constant advice and encouragement. The author also wishes to thank Profs. Marcos Dajczer, Ruy Tojeiro and Antonio Di Scala for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Machado de Freitas.

Additional information

This study was partially supported by CNPq-Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, G.M. Submanifolds with homothetic Gauss map in codimension two. Geom Dedicata 180, 151–170 (2016). https://doi.org/10.1007/s10711-015-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0096-2

Keywords

Navigation