Skip to main content
Log in

Intersection theory of the Peterson variety and certain singularities of Schubert varieties

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Precup recently proved that intersections with Schubert cells pave regular nilpotent Hessenberg varieties. We use this paving to prove that the homology of the Peterson variety injects into the homology of the full flag variety. The proof uses intersection theory and expands the class of the Peterson variety in the homology of the flag variety in terms of the basis of Schubert classes. We explicitly identify some of the coefficients of Schubert classes in this expansion, answering a problem of independent interest in Schubert calculus. We also identify some singular points in a certain family of Schubert varieties in general Lie type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akyildiz, E.: Bruhat decomposition via Gm-action. Bull. Acad. Pol. Sci. Ser. Sci. Math. 28(11–12), 541–547 (1981)

    MathSciNet  Google Scholar 

  2. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(3), 480–497 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billey, S.: Kostant polynomials and the cohomology ring of G/B. Duke Math. J. 96, 205–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billey, S., Lakshmibai, V.: Singular loci of Schubert varieties. Prog. Math. 182, Birkhauser, Boston (2000)

  5. Billey, S., Warrington, G.: Maximal singular loci of Schubert varieties in SL(n)/B. Trans. Am. Math. Soc. 355(10), 3915–3945 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billey, S., Warrington, G.: Smoothness of Schubert varieties via patterns in root subsystems. Adv. Appl. Math. 34(3), 447–466 (2005)

    Article  MATH  Google Scholar 

  7. Brion, M., Carrell, J.B.: The equivariant cohomology ring of regular varieties. Mich. Math. J. 52(1), 189–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bjorner, A., Brenti, F.: Combinatorics of Coxeter Groups. Springer, Berlin (2003)

    Google Scholar 

  9. Cortez, A.: Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe linéaire. C. R. Acad. Sci. Paris Sr. I Math. 333(6), 561–566 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collingwood, D., McGovern, W.M.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Co., New York (1993)

    MATH  Google Scholar 

  11. De Mari, F., Procesi, C., Shayman, M.: Hessenberg varieties. Trans. Am. Math. Soc. 332, 529–534 (1992)

    Article  MATH  Google Scholar 

  12. Fulman, J.: Descent identities, Hessenberg varieties, and the Weil conjectures. J. Comb. Theory Ser. A 87(2), 390–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulton, W.: Young Tableaux. With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts. Cambridge UP, Cambridge (1997)

    Google Scholar 

  14. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  15. Fung, F.Y.C.: On the topology of components of some Springer fibers and their relation to Kazhdan–Lusztig theory. Adv. Math. 178(2), 244–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gasharov, V.: Sufficiency of Lakshmibai–Sandhya singularity conditions for Schubert varieties. Compositio Math. 126(1), 47–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goresky, M., MacPherson, R.: On the spectrum of the equivariant cohomology ring. Canad. J. Math. 62(2), 262–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harada, M., Tymoczko, J.: A positive Monk formula in the \(S\)-equivariant cohomology of type \(A\) Peterson varieties. Proc. London Math. Soc. 103(1), 40–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harada, M., Tymoczko, J.: Poset pinball, GKM-compatible subspaces, and Hessenberg varieties, preprint (2010). arXiv:1007.2750

  20. Humphreys, J.: Linear Algebraic Groups, Grad. Texts in Math. 21. Springer, New York (1964)

  21. Humphreys, J.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29, 2nd edn. Cambridge University Press, Cambridge (1990)

  22. Insko, E.: Schubert calculus and the homology of the Peterson variety. Electron. J. Comb. 22(2), P2–26 (2015)

    MathSciNet  Google Scholar 

  23. Insko, E., Tymoczko, J.: Affine pavings of regular nilpotent Hessenberg varieties and intersection theory of the Peterson variety, arXiv:1309.04842

  24. Insko, E., Yong, A.: Patch ideals and Peterson varieties. Transform. Groups 17, 1011–1036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kassell, C., Lascoux, A., Reutenauer, C.: The singular locus of a Schubert variety. J. Algebra 269(1), 74–108 (2003)

    Article  MathSciNet  Google Scholar 

  26. Kostant, B.: Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight \( \rho \). Sel. Math. (N. S.) 2, 43–91 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumar, S.: Kac Moody Groups, Their Flag Varieties, and Representation Theory. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  28. Lakshmibai, V., Sandhya, B.: Criterion for smoothness of Schubert varieties in \(Sl(n)/B\). Proc. Indian Acad. Sci. Math. Sci. 100(1), 45–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Manivel, L.: Le lieu singulier des variétés de Schubert. Int. Math. Res. Not. 16, 849–871 (2001)

    Article  MathSciNet  Google Scholar 

  30. Mbirika, A.: A Hessenberg generalization of the Garsia-Procesi basis for the cohomology ring of Springer varieties, Electron. J. Comb. 17(1): Research Paper 153 (2010)

  31. Peterson, D.: Quantum cohomology of \(G/P\), Lecture Course, M. I. T., Spring Term (1997)

  32. Precup, M.: Affine pavings of Hessenberg varieties for semi simple groups. Sel. Math. (N. S.) 19(4), 903–922 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rietsch, K.: Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Am. Math. Soc. 16(2), 363–392 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reitsch, K.: Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J. 110(3), 523–553 (2001)

    Article  MathSciNet  Google Scholar 

  35. Robles, C.: Singular loci of cominuscule Schubert varieties. J. Pure Appl. Algebra 218(4), 745–759 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Springer, T.A.: Trigonometric sums, green functions of finite groups and representations of Weyl groups. Invent. Math. 36, 173–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tymoczko, J.: Paving Hessenbergs by affines. Sel. Math. (N.S.) 13, 353–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dave Anderson, Sam Evens, Megumi Harada, Nicholas Teff, and aBa Mbirika for many helpful conversations during this project. The suggestions of an anonymous referee also greatly improved this paper. EI was partially supported by NSF VIGRE grant DMS-0602242. JT was partially supported by NSF grants DMS-0801554 and DMS-1248171, and as an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julianna Tymoczko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Insko, E., Tymoczko, J. Intersection theory of the Peterson variety and certain singularities of Schubert varieties. Geom Dedicata 180, 95–116 (2016). https://doi.org/10.1007/s10711-015-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0093-5

Keywords

Mathematics Subject Classification (2010)

Navigation