Skip to main content
Log in

Quasihomogeneous three-dimensional real-analytic Lorentz metrics do not exist

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We show that a germ of a real-analytic Lorentz metric on \({\mathbb R}^3\) which is locally homogeneous on an open set containing the origin in its closure is necessarily locally homogeneous. We classifiy Lie algebras that can act quasihomogeneously—meaning they act transitively on an open set admitting the origin in its closure, but not at the origin—and isometrically for such a metric. In the case that the isotropy at the origin of a quasihomogeneous action is semisimple, we provide a complete set of normal forms of the metric and the action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amores, A.M.: Vector fields of a finite type \(G\)-structure. J. Differ. Geom. 14(1), 1–6 (1979)

    MATH  MathSciNet  Google Scholar 

  2. Benoist, Y.: Orbites des structures rigides (d’après M. Gromov). In: Integrable systems and foliations/Feuilletages et systèmes intégrables (Montpellier, 1995), vol. 145 of Progress in Mathematics, pp. 1–17. Birkhäuser Boston, Boston (1997)

  3. Benveniste, E.J., Fisher, D.: Nonexistence of invariant rigid structures and invariant almost rigid structures. Commun. Anal. Geom. 13(1), 89–111 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benoist, Y., Foulon, P., Labourie, F.: Flots d’Anosov à distributions stable et instable différentiables. J. Am. Math. Soc. 5(1), 33–74 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Calvaruso, G.: Einstein-like metrics on 3-dimensional homogeneous Lorentzian manifolds. Geom. Dedic. 127, 99–119 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Calvaruso, G., Kowalski, O.: On the Ricci operator of locally homogeneous Lorentzian 3-manifolds. CEJM 7(1), 124–139 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Cordero, L.A., Parker, P.E.: Left invariant Lorentzian metrics on 3-dimensional Lie groups. Rend. Math. Appl. (7) 17(1), 129–155 (1997)

    MATH  MathSciNet  Google Scholar 

  8. D’Ambra, G., Gromov, M.: Lectures on transformation groups: geometry and dynamics. In: Surveys in differential geometry (Cambridge. MA, 1990), pp. 19–111. Lehigh Univ, Bethlehem (1991)

  9. Dumitrescu, S., Guillot, A.: Quasihomogeneous real analytic connections on surfaces. J. Topol. Anal. 5(4), 491–532 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dumitrescu, S.: Dynamique du pseudo-groupe des isométries locales sur une variété lorentzienne analytique de dimension 3. Ergod. Theory Dyn. Syst. 28(4), 1091–1116 (2008)

    Article  MATH  Google Scholar 

  11. Dumitrescu, S., Zeghib, A.: Géométries lorentziennes de dimension trois: classification et complétude. Geom. Dedic. 149, 243–273 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feres, R.: Rigid geometric structures and actions of semisimple Lie groups. In Rigidité, groupe fondamental et dynamique, vol. 13 of Panor. Synthèses, pp. 121–167. Soc Math. France, Paris (2002)

  13. Gromov, M.: Rigid transformations groups. In: Géométrie différentielle (Paris. 1986), vol. 33 of Travaux en Cours, pp. 65–139. Hermann, Paris (1988)

  14. Kirilov, A.: Eléments de la théorie des représentations. M.I.R, Moscou (1974)

    Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I. Wiley Classics Library, Wiley, New York (1996). Reprint of the 1963 original

    Google Scholar 

  16. Melnick, K.: Compact Lorentz manifolds with local symmetry. J. Differ. Geom. 81(2), 355–390 (2009)

    MATH  MathSciNet  Google Scholar 

  17. Melnick, K.: A Frobenius theorem for Cartan geometries, with applications. Enseign. Math. (2) 57(1–2), 57–89 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nomizu, K.: On local and global existence of Killing vector fields. Ann. Math. 2(72), 105–120 (1960)

    Article  MathSciNet  Google Scholar 

  19. Nomizu, K.: Left invariant Lorentz metrics on Lie groups. Osaka J. Math. 16, 143–150 (1979)

    MATH  MathSciNet  Google Scholar 

  20. Pecastaing, V.: On two theorems about local automorphisms of geometric structures. Annales de l’Institut Fourier. arXiv:1402.5048 (to appear) (2014)

  21. Prüfer, F., Tricerri, F., Vanhecke, L.: Curvature invariants, differential operators and local homogeneity. Trans. Am. Math. Soc. 348(11), 4643–4652 (1996)

    Article  MATH  Google Scholar 

  22. Rosenlicht, M.: On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. Am. Math. Soc. 101, 211–223 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sharpe, R.W.: Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer, New York, 1997. Cartan’s generalization of Klein’s Erlangen program. With a foreword by S. S. Chern (1997)

  24. Singer, I.: Infinitesimally homogeneous spaces. Commun. Pure Appl. Math. 13, 685–697 (1960)

    Article  MATH  Google Scholar 

  25. Thurston, W.P.: Three-dimensional geometry and topology, vol. 1, volume 35 of Princeton mathematical series. Princeton University Press, Princeton (1997). Edited by Silvio Levy

    Google Scholar 

  26. Wolf, J.A.: Spaces of constant curvature. McGraw-Hill Book Co., New York (1967)

    MATH  Google Scholar 

  27. Zeghib, A.: Killing fields in compact Lorentz \(3\)-manifolds. J. Differ. Geom. 43(4), 859–894 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Melnick.

Additional information

The authors acknowledge support from U.S. National Science Foundation grants DMS-1107452, 1107263, 1107367, “RNMS: Geometric Structures and Representation Varieties (the GEAR Network).” Melnick was also supported during work on this project by a Centennial Fellowship from the American Mathematical Society and by NSF Grants DMS-1007136 and 1255462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumitrescu, S., Melnick, K. Quasihomogeneous three-dimensional real-analytic Lorentz metrics do not exist. Geom Dedicata 179, 229–253 (2015). https://doi.org/10.1007/s10711-015-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0078-4

Keywords

Mathematics Subject Classification (2010)

Navigation