Skip to main content
Log in

The Brylinski beta function of a surface

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

An analogue of Brylinski’s knot beta function is defined for a submanifold of \(d\)-dimensional Euclidean space. This is a meromorphic function on the complex plane. The first few residues are computed for a surface in three dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, A., Cantarella, J., Fu, J.H.G., Ghomi, M., Howard, R.: Circles minimize most knot energies. Topology 42(2), 381–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auckly, D., Sadun, L.: A Family of Möbius Invariant 2-Knot Energies. Geometric Topology (Athens, GA, 1993); AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc. Providence, RI, 1997, pp 235–258

  3. Brylinski, J.L.: The beta function of a knot. Int. J. Math. 10(4), 415–423 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Freedman, M.H., He, Z.X., Wang, Z.: Möbius energy of knots and unknots. Ann. Math. (2) 139(1), 1–50 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Funaba, H., O’Hara, J.: Möbius invariant energy of tori of revolution. J. Phys.: Conf. Ser. 544 (2014)

  6. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 (1977). Properties and operations, Translated from the Russian by Eugene Saletan

  7. Gray, A.: Tubes, 2nd ed., Progress in Mathematics, vol. 221. Birkhäuser Verlag, Basel (2004), With a preface by Vicente Miquel

  8. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I, 2nd ed., Springer Study Edition. Springer, Berlin (1990), Distribution theory and Fourier analysis

  9. Kusner, R.B., Sullivan, J.M.: Möbius Energies for Knots and Links, Surfaces and Submanifolds. Geometric topology (Athens, GA, 1993 AMS/IP Stud. Adv. Math., vol. 2, pp. 570–604. Amer. Math. Soc. Providence, RI (1997)

  10. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math 179(2), 683–782 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. O’Hara, J.: Energy of a knot. Topology 30(2), 241–247 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Weyl, H.: The Classical Groups, Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (1997), Their invariants and representations, Fifteenth printing, Princeton Paperbacks

  13. Willmore, T.J.: Total Curvature in Riemannian Geometry, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Vemuri.

Additional information

For Baxter and Tonu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, E.J., Vemuri, M.K. The Brylinski beta function of a surface. Geom Dedicata 179, 153–160 (2015). https://doi.org/10.1007/s10711-015-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0071-y

Keywords

Navigation