Skip to main content
Log in

Geometry of periodic regions on flat surfaces and associated Siegel–Veech constants

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by parallel geodesics of the same length. The growth rate of the number of such regions counted with weights, as a function of the length, is quadratic with a coefficient, called Siegel–Veech constant, that is shared by almost all translation surfaces in the ambient stratum. We evaluate various Siegel–Veech constants associated to the geometry of configurations of periodic cylinders and their area, and study extremal properties of such configurations in a fixed stratum and in all strata of a fixed genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bouw, I., Möller, M.: Teichmüller curves, triangle groups, and Lyapunov exponents. Ann. Math. 172, 139–185 (2010)

    Article  MATH  Google Scholar 

  2. Chen, D.: Square-tiled surfaces and rigid curves on moduli spaces. Adv. Math. 228, 1135–1162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, D., Möller, M.: Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus. Geom. Topol. 16, 2427–2479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dutka, J.: The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24, 11–29 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eskin, A., Kontsevich, M., Zorich, A.: Sum of Lyapunov Exponents of the Hodge Bundle with Respect to the Teichmüller Geodesic Flow. Publications mathématiques de l’IHÉS, Springer, Berlin (2013)

  6. Eskin, A., Masur, H.: Asymptotic formulas on flat surfaces. Ergod. Theory Dyn. Syst. 21, 443–478 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eskin, A., Masur, H., Zorich, A.: Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel–Veech constants. Publications de l’IHES 97, 61–179 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Eskin, A., Okounkov, A.: Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials. Invent. Math. 145, 59–104 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gutkin, E., Judge, C.: Affine mappings of translation surfaces: geometry and arithmetic. Duke Math. J. 103, 191–213 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kontsevich, M., Zorich, A.: Connected components of the moduli space of Abelian differentials with prescribed singularities. Invent. Math. 153, 631–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lindsey, K.A.: Counting invariant components of hyperelliptic translation surfaces. arXiv:1302.3282

  12. Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. 115, 169–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Masur, H.: Lower Bounds for the number of saddle connections and closed trajectories of a quadratic differential. In: Drasin, D. (ed.) Holomorphic Functions and Moduli, vol. I. Springer, Berlin (1988)

    Google Scholar 

  14. Masur, H.: The growth rate of trajectories of a quadratic differential. Ergod. Theory Dyn. Syst. 10, 151–176 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Masur, H., Tabachnikov, S.: Rational Billiards and Flat Structures. Handbook of Dynamical Systems, vol. 1A. Amsterdam, North-Holland (2002)

    Google Scholar 

  16. Naveh, Y.: Tight upper bounds on the number of invariant components on translation surfaces. Isr. J. Math. 165, 211–231 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Veech, W.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. 115, 201–242 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Veech, W.: Moduli spaces of quadratic differentials. J. Anal. Math. 55, 117–171 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Veech, W.: Siegel measures. Ann. Math. 148, 895–944 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vorobets, Y.: Periodic geodesics on generic translation surfaces algebraic and topological dynamics. In: Kolyada, S. Yu, I.M., Ward, T. (eds.) Contemporary Math. Am. Math. Soc., vol. 385. Providence, RI (2005)

  21. Wright, A.: Cylinder deformations in orbit closures of translation surfaces. arXiv:1302.4108

  22. Zorich, A.: Flat surfaces. In: Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics and Geometry: On Random Matrices, Zeta Functions and Dynamical Systems, vol. 1. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Anton Zorich for having initiated the present work. He asked most of the questions and initiated some answers. We thank Alex Wright for the formulation of the problem of Sect. 3.2, and for some comments on typos. We thank the anonymous referee(s) for the careful reading of the manuscript. Both authors thank ANR “GeoDyM” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Goujard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Goujard, E. Geometry of periodic regions on flat surfaces and associated Siegel–Veech constants. Geom Dedicata 174, 203–233 (2015). https://doi.org/10.1007/s10711-014-0014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-0014-z

Keywords

Navigation