Appendix: On arithmetical characterization of presence
The problem we investigate here is when a given denominator \(q_n\) in the continued fraction expansion of an irrational number \(\alpha \) is present in the boundary function \(\fancyscript{B}_{\alpha }\) (see Sect. 3). We need only consider the case where \(a_{n+1}=1\) since Corollary 3.8 guarantees that \(q_n\) is present when \(a_{n+1} \ge 2\). Assuming \(a_{n+1}=1\), the same corollary and the definition of fair triples show that
$$\begin{aligned} q_{n} \ \text {is present} \quad \Longleftrightarrow \quad r_{n-1,n}<r_{n,n+1}. \end{aligned}$$
By the formula (13), this condition can be written as
$$\begin{aligned} q_{n} \ \text {is present} \quad \Longleftrightarrow \quad \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} < \frac{q_{n+1}^2-q_{n}^2}{q_{n}^2-q_{n-1}^2}. \end{aligned}$$
(24)
The right side of the inequality in (24) is easily computed:
$$\begin{aligned} \frac{q_{n+1}^2-q_{n}^2}{q_{n}^2-q_{n-1}^2} = \frac{(q_{n}+q_{n-1})^2-q_{n}^2}{q_{n}^2-q_{n-1}^2} = \frac{2q_{n} q_{n-1} + q_{n-1}^2 }{q_{n}^2-q_{n-1}^2} = \frac{2 \mu +1}{\mu ^2-1}, \end{aligned}$$
where
$$\begin{aligned} a_{n} < \mu = \frac{q_{n}}{q_{n-1}} < a_{n}+1. \end{aligned}$$
(25)
To estimate the left side of the inequality in (24), we use the inequalities
$$\begin{aligned} 0.95 x^2 \le \sin ^2 x \le x^2 \quad \text {for} \ |x| \le \frac{\pi }{12} \end{aligned}$$
which can be easily proved using calculus. Since the denominator \(q_6\) is always \(\ge 13\), by Lemma 2.7(ii),
$$\begin{aligned} \pi \Vert q_n \alpha \Vert < \frac{\pi }{q_{n+1}} \le \frac{\pi }{12} \quad (n \ge 5). \end{aligned}$$
It follows that
$$\begin{aligned} 3.8 \pi ^2 \Vert q_n \alpha \Vert ^2 \le \delta _n = 4 \sin ^2 (\pi \Vert q_n \alpha \Vert ) \le 4 \pi ^2 \Vert q_n \alpha \Vert ^2 \quad (n \ge 5). \end{aligned}$$
Introduce the quantity
$$\begin{aligned} \lambda = \frac{\Vert q_{n} \alpha \Vert }{\Vert q_{n+1} \alpha \Vert } \end{aligned}$$
which by Lemma 2.7(iii) satisfies
$$\begin{aligned} a_{n+2} < \lambda < a_{n+2}+1. \end{aligned}$$
(26)
Note that since \(a_{n+1}=1\), we have \(\Vert q_{n-1} \alpha \Vert = \Vert q_{n} \alpha \Vert + \Vert q_{n+1} \alpha \Vert \), which shows
$$\begin{aligned} \frac{\Vert q_{n-1} \alpha \Vert }{\Vert q_{n} \alpha \Vert } = 1 + \lambda ^{-1}. \end{aligned}$$
Thus, for \(n \ge 5\),
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}}&< \frac{4 \Vert q_{n} \alpha \Vert ^2 - 3.8 \Vert q_{n+1} \alpha \Vert ^2}{3.8 \Vert q_{n-1} \alpha \Vert ^2 - 4 \Vert q_{n} \alpha \Vert ^2} \\&= \frac{1-0.95 \lambda ^{-2}}{0.95(1+\lambda ^{-1})^2-1} = \frac{\lambda ^2-0.95}{-0.05 \lambda ^2+1.9 \lambda + 0.95}. \end{aligned}$$
and
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}}&> \frac{3.8 \Vert q_{n} \alpha \Vert ^2 - 4 \Vert q_{n+1} \alpha \Vert ^2}{4 \Vert q_{n-1} \alpha \Vert ^2 - 3.8 \Vert q_{n} \alpha \Vert ^2} \\&= \frac{0.95 - \lambda ^{-2}}{(1+\lambda ^{-1})^2-0.95} = \frac{0.95 \lambda ^2-1}{0.05 \lambda ^2+2 \lambda + 1}. \end{aligned}$$
Introducing the rational functions
$$\begin{aligned} X(t)&=\frac{2t +1}{t^2-1} \\ Y(t)&=\frac{t^2-0.95}{-0.05 t^2+1.9 t + 0.95} \\ Z(t)&=\frac{0.95 t^2-1}{0.05 t^2+2 t + 1}, \end{aligned}$$
the condition (24) and the above estimates can be summarized as
$$\begin{aligned} q_{n} \ \text {is present} \quad \Longleftrightarrow \quad \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} < X(\mu ) \end{aligned}$$
(27)
and
$$\begin{aligned} Z(\lambda ) < \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} < Y(\lambda ) \quad (n \ge 5), \end{aligned}$$
(28)
where \(\mu , \lambda \) satisfy (25) and (26).
The following can be deduced from (27) and (28) (compare the graphs of \(X,Y,Z\) in Fig. 5).
-
If \(a_{n} \ge 3\) and \(a_{n+2} \ge 3\), then \(\mu , \lambda >3\) and
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} > Z(\lambda )>Z(3)>X(3)>X(\mu ). \end{aligned}$$
so \(q_{n}\) is absent.
-
If \(a_{n}=2\) and \(a_{n+2} \ge 5\), then \(2<\mu <3, \lambda >5\) and
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} > Z(\lambda )>Z(5)>X(2)>X(\mu ), \end{aligned}$$
so \(q_{n}\) is absent.
-
If \(a_{n} \ge 5\) and \(a_{n+2}= 2\), then \(\mu >5, 2<\lambda <3\) and
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} > Z(\lambda )>Z(2)>X(5)>X(\mu ), \end{aligned}$$
so \(q_{n}\) is absent.
-
If \(a_{n}=1\) and \(a_{n+2} \le 2\), then \(1<\mu <2, 1<\lambda <3\) and
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} < Y(\lambda )<Y(3)<X(2)<X(\mu ), \end{aligned}$$
so \(q_{n}\) is present.
-
Finally, if \(a_{n}=2\) and \(a_{n+2}=1\), then \(2<\mu <3, 1<\lambda <2\) and
$$\begin{aligned} \frac{\delta _{n}-\delta _{n+1}}{\delta _{n-1}-\delta _{n}} < Y(\lambda )<Y(2)<X(3)<X(\mu ), \end{aligned}$$
so \(q_{n}\) is present.
These findings are summarized in Fig. 6. In all other cases, the presence or absence of \(q_n\) also depends on other partial quotients such as \(a_{n-1}, a_{n+3}\), etc.