Skip to main content

Inner amenable groups having no stable action

Abstract

We construct inner amenable and ICC groups having no ergodic, free, probability-measure-preserving and stable action. This solves a problem posed by Jones-Schmidt in 1987.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abért, M., Jaikin-Zapirain, A., Nikolov, N.: The rank gradient from a combinatorial viewpoint. Groups Geom. Dyn. 5, 213–230 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Adams, S.: Indecomposability of equivalence relations generated by word hyperbolic groups. Topology 33, 785–798 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Bédos, E., de la Harpe, P.: Moyennabilité intérieure des groupes: définitions et exemples. Enseign. Math. (2) 32, 139–157 (1986)

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  5. 5.

    Bowditch, B.H.: Relatively hyperbolic groups. Intern. J. Algebra Comput. 22, 1250016 (2012) pp. 66

    Google Scholar 

  6. 6.

    Chifan, I., Ioana, A.: Ergodic subequivalence relations induced by a Bernoulli action. Geom. Funct. Anal. 20, 53–67 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Effros, E.G.: Property \(\Gamma \) and inner amenability. Proc. Am. Math. Soc. 47, 483–486 (1975)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Feldman, J., Sutherland, C.E., Zimmer, R.J.: Subrelations of ergodic equivalence relations. Ergod. Theory Dynam. Syst. 9, 239–269 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Jones, V.F.R., Schmidt, K.: Asymptotically invariant sequences and approximate finiteness. Am. J. Math. 109, 91–114 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Kida, Y.: Examples of amalgamated free products and coupling rigidity. Ergod. Theory Dynam. Syst. 33, 499–528 (2013)

    Google Scholar 

  11. 11.

    Kida, Y.: Invariants of orbit equivalence relations and Baumslag-Solitar groups. To appear in Tohoku Math. J. (2)

  12. 12.

    Kida, Y.: Stability in orbit equivalence for Baumslag-Solitar groups and Vaes groups. To appear in Groups Geom. Dyn.

  13. 13.

    Schmidt, K.: Asymptotically invariant sequences and an action of \(SL(2, \mathbb{Z})\) on the 2-sphere. Israel J. Math. 37, 193–208 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Schmidt, K.: Amenability, Kazhdan’s property \(T\), strong ergodicity and invariant means for ergodic group-actions. Ergod. Theory Dynam. Syst. 1, 223–236 (1981)

    Article  MATH  Google Scholar 

  15. 15.

    Serre, J.-P.: Trees, Springer Monographs in Mathematics. Springer, Berlin (2003)

    Google Scholar 

  16. 16.

    Stalder, Y.: Moyennabilité intérieure et extensions HNN. Ann. Inst. Fourier (Grenoble) 56, 309–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Vaes, S.: An inner amenable group whose von Neumann algebra does not have property Gamma. Acta Math. 208, 389–394 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Zimmer, R.J.: Ergodic Theory and Semisimple Groups, Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshikata Kida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kida, Y. Inner amenable groups having no stable action. Geom Dedicata 173, 185–192 (2014). https://doi.org/10.1007/s10711-013-9936-0

Download citation

Keywords

  • Inner amenability
  • Orbit equivalence
  • Stability
  • Property Gamma

Mathematics Subject Classification (2010)

  • 20E06
  • 20E08
  • 37A20