Skip to main content
Log in

Null Sasaki \(\eta \)-Einstein structures in 5-manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study null Sasaki structures in dimension five. As a consequence of the transverse version of Yau’s theorem due to El Kacimi-Alaoui (cf. Compositio Math. 73(1):57–106, 1990) every null Sasakian structure can be deformed to a Sasaki \(\eta \)-Einstein structure which is transverse Calabi–Yau. One refers to these structures as null Sasaki \(\eta \)-Einstein. First, based on a result of Kollár (J Geom Anal 15:445–476, 2005), we improve a result of Boyer et al. (Commun Math Phys 262(1):177–208, 2006) and prove that simply connected manifolds diffeomorphic to \(\# k(S^2\times S^3)\) admit null Sasaki \(\eta \)-Einstein structures for \(3\leqslant k \leqslant 21\). We also determine the moduli space of simply connected null Sasaki \(\eta \)-Einstein metrics. This is accomplished using information on the moduli of lattice polarized K3 surfaces of the minimal resolutions of a K3 surface with at worst cyclic singularities. Then, applying the non-degeneracy of the quadratic form in the Sasakian manifold, naturally induced by basic cohomology, we give an explicit expression for the moduli space as a quadric in complex projective space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baily, W.L.: On the embedding of V-manifolds in projective space. Am. J. Math. 79, 403–430 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barth, W., Hulek, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Eng. Math., 3. Folge, Band 4, (2nd edn). Springer, Berlin (2003)

  3. Birkenhake, C., Lange, H.: Complex Abelian Varieties, Grundleheren der Mathematishen Wissenchaften 302, 2nd edn. Springer, Berlin (2000).

  4. Boyer, C.P., Galicki, K., Nakamaye, M.: On the geometry of Sasakian–Einstein 5-manifold. Math. Ann. 325, 485–524 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyer, C.P., Galicki, K., Kollár, J.: Einstein metrics on spheres. Ann. Math. 162, 557–580 (2005)

    Article  MATH  Google Scholar 

  6. Boyer, C.P., Galicki, K., Matzeu, P.: On eta-Einstein Sasakian geometry. Commun. Math. Phys. 262(1), 177–208 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  8. Dolgachev, I.V.: Mirror symmetry for lattice polarized K3 surfaces. Algebraic geometry. 4. J. Math. Sci. 81, 2599–2630 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Durfee, Alan H.: Fifteen characterization of rational double points and simple critical points. Enseign. Math. II 25, 131–163 (1979)

    MathSciNet  Google Scholar 

  10. El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Compositio Math. 73(1), 57–106 (1990)

    MATH  MathSciNet  Google Scholar 

  11. Folland, G.B.: Compact Heisenberg manifolds as CR manifolds. J. Geom. Anal. 14(3), 521–532 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Girbau, J., Haefliger, A., Sundaraman, D.: On deformations of transversely holomorphic foliations. J. Reine Angew. Math. 345, 122–147 (1983)

    Google Scholar 

  13. Gomez, R.R.: Lorentzian Sasaki–Einstein metrics on connected sums of \(S^2\times S^3\). Geom. Dedicata 150(1), 249–255 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haefliger, A.: Groupoïdes d’holonomie et Classifiants Astérisque 116, 70–97, (1984) (transversal structure of foliations (Toulouse, 1982). MR 86c:57026a)

  15. Haefliger, A., Salem, É.: Actions of Tori in orbifolds. Ann. Global Anal. Geom. 9(1), 37–59 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huybrechts, D.: Compact Hyperkähler manifolds: basics results. Invent. Math. 135, 63–113 (1999) (see also Erratum. Invent. Math. 152, 209–212 (2003))

    Google Scholar 

  17. Iano-Fletcher, A.R.: Working with weighted complete intersections, explicit birational geometry of 3-folds. In: London Mathematical Society Lecture Notes Ser., vol. 281, Cambridge University Press, Cambridge, pp. 101–173 (2000)

  18. Kato, M., Naruki, I.: Depth of rational double points on quartic surfaces. Proc. Jpn Acad. 58 Ser. A (1982)

  19. Keum, J., Zhang, D.-Q.: Fundamental groups of open K3 surfaces enriques surfaces and fano 3-folds. J. Pure App. Alg. 170, 67–91 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kobayashi, R.: Einstein-Kähler \(V\)-metrics on open Satake \(V\)-surfaces with isolated quotient singularities. Math. Ann. 272, 385–298 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kodaira, K.: Complex Manifolds and Deformations of Complex Structures, Grundlehren der Mathematischen Wissenchaften [Fundamental Principal of Mathematical Sciences], vol. 283. Springer, New York (1986)

    Book  Google Scholar 

  22. Kollár, J.: Einstein metrics of five dimensional Seifert bundles. J. Geom. Anal. 15, 445–476 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kollár, J.: Einstein metrics on connected sums of \(S^2\times S^3\). J. Differ. Geom. 75, 259–272 (2007)

    MATH  Google Scholar 

  24. Looijenga, E.J.N.: Isolated singular points of complete intersections. In: London Mathematical Society Lecture Note Series, vol. 77. Cambridge University Press, Cambridge (1984)

  25. Oguiso, K., Zhang, D.-Q.: On the most algebraic K3 surfaces and the most extremal log enriques surfaces. Am. J. Math. 118, 1277–1297 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Okumura, M.: Some remarks on space with certain contact structure. Math. J. (2) 14, 135–145 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  27. Orlik, P., Wagreich, P.: Singularities of algebriac singularities with \(C^*\) action. Math. Ann. 193, 121–135 (1971)

    Google Scholar 

  28. Milnor, J.: Singular Points of Complex Hypersurfaces, Annals of Mathematical Studies, vol. 61. Princeton University Press, Princeton (1968)

    Google Scholar 

  29. Milnor, J., Orlik, P.: Isolated singlarities defined by weighted homogeneous polynomials. Topology 9, 385–393 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moroianu, A.: Parallel and killing spinors on spin\(^c\) manifolds. Commun. Math. Phys. 187, 417–427 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Moriyama, T.: The moduli space of transverse Calabi–Yau structures on foliated manifolds. Osaka J. Math. 48, 383–413 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Mukai, S.: Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94, 183–221 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nikulin, V.: On kummer surfaces. Izv. Akad. Nauk. SSR Ser. Math. 39, 278–293 (1975)

    MATH  MathSciNet  Google Scholar 

  34. Smale, S.: On the structure of 5-manifolds. Ann. Math. (2) 75, 38–46 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tanno, S.: Geodesic flows on \(C_L\)-manifolds and Einstein metrics on \(S^3\times S^2\). In: Minimal Submanifolds and Geodesics (Proc. Japan-United States Sem., Tokyo, 1977), pp. 283–292 . Amsterdam, North-Holland (1979)

  36. Tondeur, P.: Geometry of Foliations. Monographs in Mathematics, vol. 90. Birkhäuser, Basel (1997)

    Book  Google Scholar 

  37. Tosatti, V.: Limits of Calabi–Yau metrics when the Kähler class degenerates. J. Eur. Math. Soc. (JEMS) 11(4), 755–776 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xiao, G.: Galois covers between K3 surfaces. Annales de l’institut Fourier 46(1), 73–88 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yau, S.-T.: On the Ricci curvature of compact Kähler manifolds and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Some of these results were part of the author’s dissertation under the supervision of Charles Boyer. I thank him and Krzysztof Galicki for their invaluable help. I also would like to thank the support that I received, as a postdoctoral fellow, from McMaster University in Ontario Canada, specially from McKenzie Wang. Lastly, I thank the reviewer for very helpful comments and suggestions that improved the clarity of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Cuadros Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuadros Valle, J. Null Sasaki \(\eta \)-Einstein structures in 5-manifolds. Geom Dedicata 169, 343–359 (2014). https://doi.org/10.1007/s10711-013-9859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-013-9859-9

Keywords

Mathematics Subject Classification (2000)

Navigation