Geometriae Dedicata

, Volume 164, Issue 1, pp 351–355

Biharmonic properly immersed submanifolds in Euclidean spaces

Original Paper

DOI: 10.1007/s10711-012-9778-1

Cite this article as:
Akutagawa, K. & Maeta, S. Geom Dedicata (2013) 164: 351. doi:10.1007/s10711-012-9778-1


We consider a complete biharmonic immersed submanifold M in a Euclidean space \({\mathbb{E}^N}\). Assume that the immersion is proper, that is, the preimage of every compact set in \({\mathbb{E}^N}\) is also compact in M. Then, we prove that M is minimal. It is considered as an affirmative answer to the global version of Chen’s conjecture for biharmonic submanifolds.


Biharmonic map Biharmonic submanifold Chen’s conjecture 

Mathematics Subject Classification (2010)

Primary: 58E20 Secondary: 53C43 53A07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of Mathematics, GSISTohoku UniversitySendaiJapan

Personalised recommendations