Skip to main content
Log in

Universal hyperbolic geometry I: trigonometry

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Hyperbolic geometry is developed in a purely algebraic fashion from first principles, without a prior development of differential geometry. The natural connection with the geometry of Lorentz, Einstein and Minkowski comes from a projective point of view, with trigonometric laws that extend to ‘points at infinity’, here called ‘null points’, and beyond to ‘ideal points’ associated to a hyperboloid of one sheet. The theory works over a general field not of characteristic two, and the main laws can be viewed as deformations of those from planar rational trigonometry. There are many new features; this paper gives 92 foundational theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artzy R.: Linear Geometry. Addison-Wesley, Reading, MA (1974)

    Google Scholar 

  2. Angel J.: Finite upper half planes over finite fields. Finite Fields Appl. 2, 62–86 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beardon A.F.: The Geometry of Discrete Groups, GTM 91. Springer, New York (1983)

    Book  Google Scholar 

  4. Behnke, H., Bachmann, F., Fladt, K., Kunle, H. (eds): Fundamentals of Mathematics vol. 2 Geometry. MIT Press, Cambridge (1974)

    Google Scholar 

  5. Coxeter H.S.M.: Introduction to Geometry. Wiley, New York (1961)

    MATH  Google Scholar 

  6. Fenchel W.: Elementary Geometry in Hyperbolic Space, Studies in Mathematics 11. Walter de Gruyter, Berlin (1989)

    Book  Google Scholar 

  7. Goh, S.: Chebyshev polynomials and spread polynomials, Honours Thesis. School of Mathematics, UNSW (2005)

  8. Goh, S., Wildberger, N.J.: Spread polynomials, rotations and the butterfly effect. arXiv:0911.1025vl (2009)

  9. Greenberg M.J.: Euclidean and Non-Euclidean Geometries: Development and History. W. H. Freeman, San Francisco (1972)

    Google Scholar 

  10. Gunn, C.: Geometry, Kinematics and Rigid Body Mechanics in Cayley–Klein Geometries. PhD thesis, Berlin (2011)

  11. Hestenes D., Li H., Rockwood A.: A unified algebraic approach for classical geometries. In: Sommer, G. (eds) Geometric Computing with Clifford Algebra, pp. 3–27. Springer, Berlin (2001)

    Google Scholar 

  12. Katok S.: Fuchsian Groups, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)

    Google Scholar 

  13. Klein, F.: Vorlesungen über nicht-euklidische Geometrie. Springer, Berlin, reprinted 1968 (orig. 1928)

  14. Klingenberg W.: Eine Begründung der hyperbolischen Geometrie. Math. Ann. 127, 340–356 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ramsay A., Richtmyer R.D.: Introduction to Hyperbolic Geometry. Springer, New York (1995)

    Book  MATH  Google Scholar 

  16. Richter-Gebert J.: Perspectives on Projective Geometry: A Guided Tour through Real and Complex Geometry. Springer, Heidelberg (2010)

    Google Scholar 

  17. Szmielew, W.: Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry. In: Studies in Logic and the Foundations of Mathematics, vol. 27, pp. 30–52 (1959)

  18. Soto-Andrade, J.: Geometrical Gel’fand models, tensor quotients, and Weil representations. In: Proc. Symp. Pure Math. vol. 47, Am. Math. Soc., Providence, pp. 305–316 (1987)

  19. Sommerville D.M.Y.: The Elements of Non-Euclidean Geometry. G. Bell and Sons, London (1914)

    MATH  Google Scholar 

  20. Terras A.: Fourier Analysis on Finite Groups and Applications, London Math. Soc. Student Texts 43. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Thurston W.P.: Threedimensional geometry and topology. In: Levy, S. (eds) Princeton mathematical series 35, vol. 1., Princeton University Press, Princeton NJ (1997)

    Google Scholar 

  22. Ungar, A.A.: Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry. In: Computers and Mathematics with Applications vol. 40, Issues 2–3, July–August 2000, pp. 313–332

  23. Wildberger N.J.: Divine Proportions: Rational Trigonometry to Universal Geometry. Wild Egg Books, Sydney (2005)

    MATH  Google Scholar 

  24. Wildberger N.J.: One dimensional metrical geometry. Geometriae Dedicata 128(1), 145–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wildberger N.J.: Chromogeometry and Relativistic Conics. KoG 13, 43–50 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Wildberger, N.J.: Universal affine and projective geometry. J. Geom (to appear)

  27. Wildberger N.J.: A Rational Approach to Trigonometry. Math Horizons, 16–20 (Nov. 2007)

  28. Wildberger N.J.: Universal hyperbolic geometry II: a pictorial overview. KoG 14, 3–24 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Wildberger N.J.: Universal hyperbolic geometry III: first steps in projective triangle geometry. KoG 15, 25–49 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Wildberger N.J.: Chromogeometry. Math. Intel. 32(1), 26–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Wildberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildberger, N.J. Universal hyperbolic geometry I: trigonometry. Geom Dedicata 163, 215–274 (2013). https://doi.org/10.1007/s10711-012-9746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9746-9

Keywords

Mathematics Subject Classification (2000)

Navigation