Geometriae Dedicata

, Volume 163, Issue 1, pp 193–213 | Cite as

An upper bound on density for packings of collars about hyperplanes in \({\mathbb{H}^n}\)

  • Andrew PrzeworskiEmail author
Original Paper


We consider packings of radius r collars about hyperplanes in \({\mathbb{H}^n}\). For such packings, we prove that the Delaunay cells are truncated ultra-ideal simplices which tile \({\mathbb{H}^n}\). If we place n + 1 hyperplanes in \({\mathbb{H}^n}\) each at a distance of exactly 2r to the others, we could place radius r collars about these hyperplanes. The density of these collars within the corresponding Delaunay cell is an upper bound on density for all packings of radius r collars.


Density Hyperplanes Delaunay Hyperbolic geometry 

Mathematics Subject Classification (2000)

51M09 52C17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böröczky K., Florian A.: Über die dichteste Kugelpackung im hyperbolischen Raum. Acta Math. Acad. Sci. Hung. 15, 237–245 (1964)CrossRefzbMATHGoogle Scholar
  2. 2.
    Böröczky K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hung. 32, 243–326 (1978)CrossRefzbMATHGoogle Scholar
  3. 3.
    Fenchel, W., Heinz Bauer (ed.): Elementary Geometry in Hyperbolic Space, Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter & Co., Berlin (1989)Google Scholar
  4. 4.
    Marshall T.H., Martin G.J.: Packing strips in the hyperbolic plane. Proc. Edinb. Math. Soc. (2) 46(1), 67–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Przeworski, A.: Delaunay Cells for Arrangements of Flats in Hyperbolic Space. Pacific J. Math. (to appear) (2010)Google Scholar
  6. 6.
    Rankin R.A.: The closest packing of spherical caps in n dimensions. Proc. Glasg. Math. Assoc. 2, 139–144 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Rogers C.A.: The packing of equal spheres. Proc. Lond. Math. Soc. (3) 8, 609–620 (1958)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ushijima, A.: A volume formula for generalised hyperbolic tetrahedra. In: Non-Euclidean Geometries, Mathematics with Applications (NY), vol. 581, pp. 249–265. Springer, New York (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsCollege of CharlestonCharlestonUSA

Personalised recommendations