Abstract
We consider the relationship between hyperbolic cone-manifold structures on surfaces, and algebraic representations of the fundamental group into a group of isometries. A hyperbolic cone-manifold structure on a surface, with all interior cone angles being integer multiples of 2π, determines a holonomy representation of the fundamental group. We ask, conversely, when a representation of the fundamental group is the holonomy of a hyperbolic cone-manifold structure. In this paper we build upon previous work with punctured tori to prove results for higher genus surfaces. Our techniques construct fundamental domains for hyperbolic cone-manifold structures, from the geometry of a representation. Central to these techniques are the Euler class of a representation, the group \({\widetilde{PSL_{2}\mathbb{R}}}\) , the twist of hyperbolic isometries, and character varieties. We consider the action of the outer automorphism and related groups on the character variety, which is measure-preserving with respect to a natural measure derived from its symplectic structure, and ergodic in certain regions. Under various hypotheses, we almost surely or surely obtain a hyperbolic cone-manifold structure with prescribed holonomy.
This is a preview of subscription content, access via your institution.
References
Brown K.S.: Cohomology of Groups Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982)
Buser P.: Geometry and Spectra of Compact Riemann Surfaces Progress in Mathematics, vol. 106. Birkhäuser Boston Inc., Boston (1992)
Culler M., Shalen P.B.: Varieties of group representations and splittings of 3-manifolds. Ann. Math. (2) 117(1), 109–146 (1983). doi:10.2307/2006973
Eisenbud D., Hirsch U., Neumann W.: Transverse foliations of seifert bundles and self-homeomorphism of the circle. Comment. Math. Helv 56(4), 638–660 (1981). doi:10.1007/BF02566232
Gallo D., Kapovich M., Marden A.: The monodromy groups of Schwarzian equations on closed Riemann surfaces. Ann. Math. (2) 2(151), 625–704 (2000). doi:10.2307/121044
Goldman, W.M.: Discontinuous groups and the euler class. Ph.D. thesis, Berkeley (1980)
Goldman W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2), 200–225 (1984). doi:10.1016/0001-8708(84)90040-9
Goldman W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988). doi:10.1007/BF01410200
Goldman W.M.: Ergodic theory on moduli spaces. Ann. Math. (3) 2(146), 475–507 (1997). doi:10.2307/2952454
Goldman W.M.: The modular group action on real SL(2)-characters of a one-holed torus. Geom. Topol. 7, 443–486 (2003). doi:10.2140/gt.2003.7.443 (electronic)
Hilton P.J., Stammbach U.: A Course in Homological Algebra, Graduate Texts in Mathematics, vol. 4, 2nd edn. Springer, New York (1997)
Hodgson, C.D.: Degeneration and regeneration of geometric structures on three-manifolds. Ph.D. thesis, Princeton University (1986)
Huebschmann J.: Symplectic and Poisson structures of certain moduli spaces I. Duke Math. J. 80(3), 737–756 (1995). doi:10.1215/S0012-7094-95-08024-7
Leleu, X.: Géométries de courbure constante des 3-variétés et variétés de caractères de représentations dans \({sl_2(\mathbb{C})}\) . Ph.D. thesis, Université de Provence, Marseille (2000)
Mathews, D.: From algebra to geometry: a hyperbolic odyssey; the construction of geometric cone-manifold structures with prescribed holonomy. Masters thesis, University of Melbourne (2005) Available at the author’s website, http://math.stanford.edu/~mathews
Mathews, D.: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori (2010) Accepted for publication in Geometriae Dedicata, also available at http://arxiv.org/abs/1006.5223
Mathews, D.: The hyperbolic meaning of the Milnor–Wood inequality (2010) Submitted for publication, also available at http://arxiv.org/abs/1006.5403
Milnor J.: On the existence of a connection with curvature zero. Comment. Math. Helv. 32, 215–223 (1958)
Milnor, J.W., Stasheff, J.D.: Characteristic classes. N. J. Annals of Mathematics Studies, Princeton University Press, Princeton, No. 76 (1974)
Nielsen J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math. 50(1), 189–358 (1927). doi:10.1007/BF02421324
Pollard D.: A user’s guide to measure theoretic probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 8 . Cambridge University Press, Cambridge (2002)
Stillwell, J.: The Dehn-Nielsen theorem. In: Papers on Group Theory and Topology by Max Dehn. Springer, Berlin (1988)
Tan S.P.: Branched CP 1-structures on surfaces with prescribed real holonomy. Math. Ann. 300(4), 649–667 (1994). doi:10.1007/BF01450507
Thurston, W.P.: The geometry and topology of 3-manifolds. Mimeographed notes (1979)
Thurston W.P.: Three-dimensional geometry and topology, vol. 1. In: Levy, S. (eds) Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton (1997)
Troyanov M.: Prescribing curvature on compact surfaces with conical singularities. Trans. Am. Math. Soc. 324(2), 793–821 (1991). doi:10.2307/2001742
Wood J.W.: Bundles with totally disconnected structure group. Comment. Math. Helv. 46, 257–273 (1971)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mathews, D.V. Hyperbolic cone-manifold structures with prescribed holonomy II: higher genus. Geom Dedicata 160, 15–45 (2012). https://doi.org/10.1007/s10711-011-9668-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-011-9668-y
Keywords
- Hyperbolic
- Cone-manifold
- Holonomy
Mathematics Subject Classification (2000)
- 57M50