Advertisement

Geometriae Dedicata

, Volume 159, Issue 1, pp 71–88 | Cite as

Ends of strata of the moduli space of quadratic differentials

  • Corentin BoissyEmail author
Original Paper
  • 71 Downloads

Abstract

Very few results are known about the topology of the strata of the moduli space of quadratic differentials. In this paper, we prove that any connected component of such strata has only one topological end. A typical flat surface in a neighborhood of the boundary is naturally split by a collection of parallel short saddle connections, but the discrete data associated to this splitting can be quite difficult to describe. In order to bypass these difficulties, we use the Veech zippered rectangles construction and the corresponding (extended) Rauzy classes.

Keywords

Interval exchange maps Linear involutions Rauzy classes Quadratic differentials Moduli spaces 

Mathematics Subject Classification (2000)

32G15 37E05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boissy C.: Configurations of saddle connections of quadratic differentials on \({\mathbb{CP}^1}\) and on hyperelliptic Riemann surfaces. Comment. Math. Helvetici. 84, 757–791 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boissy C.: Degenerations of quadratic differentials on \({\mathbb{CP}^1}\) . Geom. Topol. 12, 1345–1386 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Boissy C., Lanneau E.: Dynamics and geometry of the Rauzy–Veech induction for quadratic differentials. Ergod. Theory Dyn. Syst. 29, 767–816 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Eskin A., Masur H.: Asymptotic formulas on flat surfaces. Ergod. Theory Dyn. Syst. 21(2), 443–478 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Eskin A., Masur H., Zorich A.: Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel–Veech constants. Publ. Math. IHES 97, 61–179 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hubbard J., Masur H.: Quadratic differentials and foliations. Acta Math. 142, 221–274 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hughes B., Ranicky A.: Ends of Complexes. Cambridge university press, Cambridge (1996)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kontsevich M., Zorich A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153(3), 631–678 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lanneau E.: Connected components of the strata of the moduli spaces of quadratic differentials with prescribed singularities. Ann. Sci. École Norm. Sup. 41(1), 1–56 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Marmi S., Moussa P., Yoccoz J.-C.: The cohomological equation for Roth type interval exchange transformations. J. Am. Math. Soc. 18(4), 823–872 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Masur H.: Interval exchange transformations and measured foliations. Ann. Math. 141, 169–200 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Masur H., Zorich A.: Multiple saddle connections on flat surfaces and the principal boundary of the moduli space of quadratic differentials. Geom. Funct. Anal. 18(3), 919–987 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Masur, H., Tabachnikov, S.: Rational billiards and flat structures. In: Handbook of Dynamical Systems, vol. 1A, pp. 1015–1089. North-Holland, Amsterdam (2002)Google Scholar
  14. 14.
    Veech W.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. 115(2), 201–242 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Veech W.: The Teichmüller geodesic flow. Ann. Math. 124, 441–530 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Veech W.: Moduli spaces of quadratic differentials. J. Anal. Math. 55, 117–170 (1990)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.LATP, case cour A, Faculté de Saint Jérôme, Avenue Escadrille Normandie-NiemenUniversité Paul CezanneMarseille cedex 20France

Personalised recommendations