Advertisement

Geometriae Dedicata

, Volume 159, Issue 1, pp 51–69 | Cite as

Surface framed braids

  • Paolo BellingeriEmail author
  • Sylvain Gervais
Original Paper

Abstract

In this paper we introduce the framed pure braid group on n strands of an oriented surface, a topological generalisation of the pure braid group P n . We give different equivalent definitions for framed pure braid groups and we study exact sequences relating these groups with other generalisations of P n , usually called surface pure braid groups. The notion of surface framed braid groups is also introduced.

Keywords

Surface braid groups Mapping class groups 

Mathematics Subject Classification (2000)

20F36 57M05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardakov V., Bellingeri P.: On residual properties of pure braid groups of closed surfaces. Commun. Algebra 37, 1481–1490 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bellingeri P.: Centralisers of surface braid groups. Commun. Algebra 32, 4099–4116 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bellingeri P.: On presentations of surface braid groups. J. Algebra 274, 543–563 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bellingeri, P., Cattabriga, A.: Hilden braid groups, ArXiv 0909.4845. J. Knot Theory Ramif. (to appear)Google Scholar
  5. 5.
    Bellingeri P., Gervais S., Guaschi J.: Lower central series of Artin-Tits and surface braid groups. J. Algebra 319, 1409–1427 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Birman, J.S.: Braids, links, and mapping class groups. In: Annals of Mathematic Studies, vol. 82. Princeton University Press, Princeton (1974)Google Scholar
  7. 7.
    Fadell E., Neuwirth L.: Configuration spaces. Math. Scand. 10, 111–118 (1962)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Falk M., Randell R.: The lower central series of a fiber type arrangement. Invent. Math. 82, 77–88 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fenn R., Rolfsen D., Zhu J.: Centralisers in the braid group and singular braid monoid. Enseign. Math. 42, 75–96 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gonçalves D., Guaschi J.: On the structure of surface pure braid groups. J. Pure Appl. Algebra 186, 187–218 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gillette R., Van Buskirk J.: The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere. Trans. Am. Math. Soc. 131, 277–296 (1968)zbMATHGoogle Scholar
  12. 12.
    Johnson, D.L.: Presentation of groups. In: London Mathematical Society Lectures Notes, vol. 22. Cambridge University Press, Cambridge (1976)Google Scholar
  13. 13.
    Ko H., Smolinsky L.: The framed braid group and 3-manifolds. Proc. Am. Math. Soc. 115, 541–551 (1992)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Labruère C., Paris L.: Presentations for the punctured mapping class groups in terms of Artin groups. Algebr. Geom. Topol. 1, 73–114 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Margalit D., McCammond J.: Geometric presentations for pure braid group. J. Knot Theory Ramif. 18, 1–20 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Massuyeau, G., Oancea, A., Salamon, D.A.: Lefschetz fibrations, intersection numbers, and representations of the framed braid group, ArXiv 0708.2051v4Google Scholar
  17. 17.
    Papadima S.: The universal finite-type invariant for braids, with integer coefficients. Topol. Appl. 118, 169–185 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Paris L., Rolfsen D.: Geometric subgroups of surface braid groups. Ann. Inst. Fourier 49(2), 417–472 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Paris L., Rolfsen D.: Geometric subgroups of mapping class groups. J. Reine Angew. Math. 521, 47–83 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Scott G.P.: Braid groups and the group of homeomorphisms of a surface. Proc. Camb. Philos. Soc. 68, 605–617 (1970)zbMATHCrossRefGoogle Scholar
  21. 21.
    Scott G.P.: The space of homeomorphisms of a 2-manifold. Topology 9, 97–109 (1970)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Nicolas OresmeUniversité de Caen, CNRS-UMR 6139CaenFrance
  2. 2.Laboratoire Jean LerayUniversité de Nantes, CNRS-UMR 6629NantesFrance

Personalised recommendations