Abstract
This paper completes a proof of the Dirac reduction theorem by involutive tangent subbundles. As a consequence, Dirac reduction by a proper Lie group action having one isotropy type is carried out. The main technical tool in the proof is the notion of partial connections on suitable vector bundles.
Similar content being viewed by others
References
Bressler P., Chervov A.: Courant algebroids. J. Math. Sci. (N.Y.) 128(4), 3030–3053 (2005)
Bursztyn H., Cavalcanti G.R., Gualtieri M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2), 726–765 (2007)
Bursztyn, H., Cattaneo, A.S., Mehta, R., Zambon, M.: Generalized reduction via graded geometry, in preparation
Blankenstein, G.: Implicit Hamiltonian systems: symmetry and interconnection. PhD.Thesis, University of Twente (2000)
Bott R.: Lectures on characteristic classes and foliations. Notes by Lawrence Conlon. Appendices by J. Stasheff. Lectures algebraic diff. Topology, Lect. Notes Math. 279, 1–94 (1972)
Blankenstein G., Ratiu T.S.: Singular reduction of implicit Hamiltonian systems. Rep. Math. Phys. 53(2), 211–260 (2004)
Blankenstein G., van der Schaft A.J.: Symmetry and reduction in implicit generalized Hamiltonian systems. Rep. Math. Phys. 47(1), 57–100 (2001)
Courant T.J.: Dirac manifolds. Trans. Am. Math. Soc 319(2), 631–661 (1990)
Courant T.J.: Tangent Dirac structures. J. Phys. A, Math. Gen. 23(22), 5153–5168 (1990)
Cheng D., Tarn T.J.: New result on (f, g)-invariance. Syst. Control Lett. 12(4), 319–326 (1989)
Courant, T.J., Weinstein A.: Beyond Poisson structures, Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, vol. 27, pp. 39–49. Hermann, Paris (1988)
Dorfman I.: Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Science: Theory and Applications. John Wiley & Sons Ltd., Chichester (1993)
Iliev, B.Z.: Handbook of Normal Frames and Coordinates., Progress in Mathematical Physics 42. Basel: Birkhäuser. xv, 441 pp. (2006)
Isidori A.: Nonlinear Control Systems, 3rd edn., Communications and Control Engineering Series. Springer, Berlin (1995)
Jost J.: Riemannian Geometry and Geometric Analysis, 5th edn., Universitext. Springer, Berlin (2008)
Jotz, M., Ratiu, T.S.: Dirac and nonholonomic reduction, arXiv:0806.1261v2 (2008)
Jotz M., Ratiu T.S., Śniatycki J.: Singular Dirac reduction. Trans. Am. Math. Soc. 363, 2967–3013 (2011)
Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3), 547–574 (1997)
Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. New York etc.: Springer, xiii, 467 p. (1990)
Roytenberg, D.: Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds, PhD. thesis, University of California at Berkeley, arXiv math/9910078 (1999)
Ševera, P.: How courant algebroids appear in 2-dim variational problems (or maybe in string theory) Letter to Alan Weinstein, 1998. Available at http://sophia.dtp.fmph.uniba.sk/~severa/letters/no1.ps
Zambon M.: Reduction of branes in generalized complex geometry. J. Symplectic Geom. 6(4), 353–378 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jotz, M., Ratiu, T.S. & Zambon, M. Invariant frames for vector bundles and applications. Geom Dedicata 158, 23–34 (2012). https://doi.org/10.1007/s10711-011-9618-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-011-9618-8