Skip to main content
Log in

Invariant frames for vector bundles and applications

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

This paper completes a proof of the Dirac reduction theorem by involutive tangent subbundles. As a consequence, Dirac reduction by a proper Lie group action having one isotropy type is carried out. The main technical tool in the proof is the notion of partial connections on suitable vector bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressler P., Chervov A.: Courant algebroids. J. Math. Sci. (N.Y.) 128(4), 3030–3053 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bursztyn H., Cavalcanti G.R., Gualtieri M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2), 726–765 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bursztyn, H., Cattaneo, A.S., Mehta, R., Zambon, M.: Generalized reduction via graded geometry, in preparation

  4. Blankenstein, G.: Implicit Hamiltonian systems: symmetry and interconnection. PhD.Thesis, University of Twente (2000)

  5. Bott R.: Lectures on characteristic classes and foliations. Notes by Lawrence Conlon. Appendices by J. Stasheff. Lectures algebraic diff. Topology, Lect. Notes Math. 279, 1–94 (1972)

    Article  MathSciNet  Google Scholar 

  6. Blankenstein G., Ratiu T.S.: Singular reduction of implicit Hamiltonian systems. Rep. Math. Phys. 53(2), 211–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blankenstein G., van der Schaft A.J.: Symmetry and reduction in implicit generalized Hamiltonian systems. Rep. Math. Phys. 47(1), 57–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courant T.J.: Dirac manifolds. Trans. Am. Math. Soc 319(2), 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courant T.J.: Tangent Dirac structures. J. Phys. A, Math. Gen. 23(22), 5153–5168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng D., Tarn T.J.: New result on (f, g)-invariance. Syst. Control Lett. 12(4), 319–326 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courant, T.J., Weinstein A.: Beyond Poisson structures, Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, vol. 27, pp. 39–49. Hermann, Paris (1988)

  12. Dorfman I.: Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Science: Theory and Applications. John Wiley & Sons Ltd., Chichester (1993)

    Google Scholar 

  13. Iliev, B.Z.: Handbook of Normal Frames and Coordinates., Progress in Mathematical Physics 42. Basel: Birkhäuser. xv, 441 pp. (2006)

  14. Isidori A.: Nonlinear Control Systems, 3rd edn., Communications and Control Engineering Series. Springer, Berlin (1995)

    Google Scholar 

  15. Jost J.: Riemannian Geometry and Geometric Analysis, 5th edn., Universitext. Springer, Berlin (2008)

    Google Scholar 

  16. Jotz, M., Ratiu, T.S.: Dirac and nonholonomic reduction, arXiv:0806.1261v2 (2008)

  17. Jotz M., Ratiu T.S., Śniatycki J.: Singular Dirac reduction. Trans. Am. Math. Soc. 363, 2967–3013 (2011)

    Article  MATH  Google Scholar 

  18. Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3), 547–574 (1997)

    MathSciNet  Google Scholar 

  19. Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. New York etc.: Springer, xiii, 467 p. (1990)

  20. Roytenberg, D.: Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds, PhD. thesis, University of California at Berkeley, arXiv math/9910078 (1999)

  21. Ševera, P.: How courant algebroids appear in 2-dim variational problems (or maybe in string theory) Letter to Alan Weinstein, 1998. Available at http://sophia.dtp.fmph.uniba.sk/~severa/letters/no1.ps

  22. Zambon M.: Reduction of branes in generalized complex geometry. J. Symplectic Geom. 6(4), 353–378 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zambon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jotz, M., Ratiu, T.S. & Zambon, M. Invariant frames for vector bundles and applications. Geom Dedicata 158, 23–34 (2012). https://doi.org/10.1007/s10711-011-9618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-011-9618-8

Keywords

Mathematics Subject Classification (2000)

Navigation