Geometriae Dedicata

, Volume 156, Issue 1, pp 13–30 | Cite as

Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification

  • Thomas KoberdaEmail author
Original Paper


We study the action of the mapping class group on the integral homology of finite covers of a topological surface. We use the homological representation of the mapping class to construct a faithful infinite-dimensional representation of the mapping class group. We show that this representation detects the Nielsen–Thurston classification of each mapping class. We then discuss some examples that occur in the theory of braid groups and develop an analogous theory for automorphisms of free groups. We close with some open problems.


Mapping class groups Braid groups Nielsen–Thurston classification Representations of the mapping class group Automorphisms of free groups 

Mathematics Subject Classification (2010)

57M10 57M99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen J.E.: Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups. Ann Math 163(1), 347–368 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Band, G., Boyland, P.: The Burau estimate for the entropy of a braid. Available at arXiv:math/0612716 (2006)Google Scholar
  3. 3.
    Bass, H., Lubotzky, A.: Linear-central filtrations on groups. In: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions. Contemporary of Mathematics, vol. 169, pp. 45–98 (1994)Google Scholar
  4. 4.
    Bestvina, M.: A Bers-like proof of the existence of trans tracks for free group automorphisms. arXiv:1001.0325v1 [math.GR] (2010)Google Scholar
  5. 5.
    Bestvina M., Handel M.: Train tracks and automorphisms of free groups. Ann. Math. 135, 1–51 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bigelow S.J.: Braid groups are linear. J. Am. Math. Soc. 14(2), 471–486 (2001) (electronic)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bigelow S.J.: The Burau representation is not faithful for n = 5. Geom. Topol. 3, 397–404 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bigelow S.J., Budney R.D.: The mapping class group of a genus two surface is linear. Algebr. Geom. Topol. 1, 699–708 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces After Nielsen and Thurston. London Mathematical Society Student Texts, vol. 9 (1988)Google Scholar
  10. 10.
    Chevalley C., Weil A.: Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers. Abh. Math. Sem. Univ. Hamburg 10, 358–361 (1934)CrossRefGoogle Scholar
  11. 11.
    Daniel T.W.: A residually finite version of Rips’ construction. Bull. Lond. Math. Soc. 35(1), 23–29 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les Surfaces. Soc. Math. de France, Paris, Astérisque 66–67 (1979)Google Scholar
  13. 13.
    Farb, B. (ed.): Problems on mapping class groups and related topics. Proc. Symp. Pure Appl. Math. 74 (2006)Google Scholar
  14. 14.
    Farb, B., Margalit, D.: A Primer on the Mapping Class Group. To be published by Princeton University Press (2011)Google Scholar
  15. 15.
    Formanek E., Procesi C.: The automorphism group of a free group is not linear. J. Algebra 149(2), 494–499 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Grossman E.K.: On the residual finiteness of certain mapping class groups. J. Lond. Math. Soc. 9, 160–164 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hironaka E., Kin E.: A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. Topol 6, 699–738 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kazhdan, D.A.: On arithmetic varieties. In: Lie Groups and Their Representations (Proceedings of Summer School, Bolyai Janos Mathematical Society, Budapest, 1971), pp. 151–217, Halsted (1975)Google Scholar
  19. 19.
    Koberda, T., Silberstein, A.M.: Representations of Galois groups on the homology of surfaces. arXiv:0905.3002Google Scholar
  20. 20.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, New York (1977), reprint in (2001)Google Scholar
  21. 21.
    Malestein J.: Pseudo-anosov homeomorphisms and the lower central series of a surface group. Algebr. Geom. Topol. 7, 1921–1948 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    McMullen, C.T.: Entropy on Riemann surfaces and the Jacobians of finite covers. Preprint (2010)Google Scholar
  23. 23.
    Rhodes J.A.: Sequences of metrics on compact Riemann surfaces. Duke Math. J. 72, 725–738 (1993)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations