Skip to main content

Moduli spaces of vector bundles over a Klein surface


A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S and holomorphic vector bundles over M, devoting special attention to the implications that this has for moduli varieties of semistable vector bundles over M. We construct, starting from S, totally real, totally geodesic, Lagrangian submanifolds of moduli varieties of semistable vector bundles of fixed rank and degree over M. This relates the present work to the constructions of Ho and Liu over non-orientable compact surfaces with empty boundary (Ho and Liu in Commun Anal Geom 16(3):617–679, 2008).

This is a preview of subscription content, access via your institution.


  1. Alling N.L., Greenleaf N.: Foundations of the Theory of Klein Surfaces. Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971)

    Google Scholar 

  2. Atiyah M.F.: K-theory and reality. Q. J. Math. Oxford Ser. 17(2), 367–386 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  3. Atiyah M.F., Bott R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A 308(1505), 523–615 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  4. Baird T.J.: Moduli spaces of flat SU(2)-bundles over non-orientable surfaces. Q. J. Math. 61(2), 141–170 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  5. Biswas I., Huisman J., Hurtubise J.: The moduli space of stable vector bundles over a real algebraic curve. Math. Ann. 347, 201–233 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  6. Donaldson S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom. 18(2), 269–277 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Donaldson S.K., Kronheimer P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford Science Publications, New York (1990)

    Google Scholar 

  8. Ho N.K., Liu C.C.M.: Yang-Mills connections on nonorientable surfaces. Commun. Anal. Geom. 16(3), 617–679 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Ramras, D.: The Yang-Mills stratification for surfaces revisited. (2008)

  10. Saveliev, N., Wang, S.: On real moduli spaces over M-curves. (2008)

  11. Seshadri C.S.: Space of unitary vector bundles on a compact Riemann surface. Ann. Math. 85(2), 303–336 (1967)

    MathSciNet  Article  Google Scholar 

  12. Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. (2) 134(2), 375–422 (1991). doi:10.2307/2944350, URL

  13. Verdier, J.L., Le Potier, J. (eds.): Module des fibrés stables sur les courbes algébriques, Progress in Mathematics, Vol 54. Birkhäuser Boston Inc., Boston, MA, papers from the conference held at the École Normale Supérieure, Paris, 1983 (1985)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Florent Schaffhauser.

Additional information

Dedicated to the memory of Paulette Libermann (1919–2007).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schaffhauser, F. Moduli spaces of vector bundles over a Klein surface. Geom Dedicata 151, 187–206 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Moduli spaces
  • Lagrangian submanifolds
  • Klein surfaces

Mathematics Subject Classification (2000)

  • 53D30
  • 53D12
  • 30F50