Skip to main content
Log in

Insecurity for compact surfaces of positive genus

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A pair of points in a riemannian manifold M is secure if the geodesics between the points can be blocked by a finite number of point obstacles; otherwise the pair of points is insecure. A manifold is secure if all pairs of points in M are secure. A manifold is insecure if there exists an insecure point pair, and totally insecure if all point pairs are insecure. Compact, flat manifolds are secure. A standing conjecture says that these are the only secure, compact riemannian manifolds. We prove this for surfaces of genus greater than zero. We also prove that a closed surface of genus greater than one with any riemannian metric and a closed surface of genus one with generic metric are totally insecure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangert, V.: Mather sets for twist maps and geodesics on tori, Dynamics Reported, Vol. 1, 1–56, Dynam. Report. Ser. Dynam. Systems Appl., 1, Wiley, Chichester, (1988)

  2. Bangert V.: Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. Partial Differ. Equ. 2, 49–63 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bangert, V.: Hypersufaces without self-intersections in the torus, Twist mappings and their applications, 55–71, IMA Vol. Math. Appl., 44, Springer, New York, (1992)

  4. Bangert, V.: On 2-tori having a pole, (preprint) (2009)

  5. Bangert, V., Gutkin, E.: Secure two-dimensional tori are flat, (preprint) arXiv:0806.3572 (2008)

  6. Burns K., Gutkin E.: Growth of the number of geodesics between points and insecurity for riemannian manifolds. Discr. Cont. Dyn. Syst. A21, 403–413 (2008)

    MathSciNet  Google Scholar 

  7. Busemann H.: The Geometry of Geodesics. Academic Press, New York (1955)

    MATH  Google Scholar 

  8. Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics 55. Springer, Berlin (1968)

  9. Gutkin E.: Blocking of billiard orbits and security for polygons and flat surfaces. GAFA: Geom. Funct. Anal. 15, 83–105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gutkin E.: Topological entropy and blocking cost for geodesics in Riemannian manifolds. Geom. Dedicata 138, 13–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gutkin E., Schroeder V.: Connecting geodesics and security of configurations in compact locally symmetric spaces. Geom. Dedicata 118, 185–208 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hedlund G.A.: Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. Math. 33, 719–739 (1932)

    Article  MathSciNet  Google Scholar 

  13. Herreros P.: Blocking: new examples and properties of products. Erg. Theory Dyn. Syst. 29, 569–578 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hirsch M.W.: Differential Topology. Springer Verlag, New York (1976)

    MATH  Google Scholar 

  15. Hopf E.: Closed surfaces without conjugate points. Proc. Nat. Acad. Sci. USA 34, 47–51 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  16. Innami N.: Families of geodesics which distinguish flat tori. Math. J. Okayama Univ. 28, 207–217 (1986)

    MATH  MathSciNet  Google Scholar 

  17. Klingenberg W.: A course in differential geometry. Springer Verlag, New York (1978)

    MATH  Google Scholar 

  18. Lafont J.-F., Schmidt B.: Blocking light in compact Riemannian manifolds. Geom. Topol. 11, 867–887 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mather J.N.: Action minimizing invariant measures for positive definite lagrangian systems. Math. Z. 207, 169–207 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Morse M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc. 26, 25–60 (1924)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schwartzman S.: Asymptotic cycles. Ann. Math. 66, 270–284 (1957)

    Article  MathSciNet  Google Scholar 

  22. Solomon B.: On foliations of \({\mathbb{R}^{n+1}}\) by minimal hypersurfaces. Comment. Math. Helv. 61, 67–83 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Weil A.: On systems of curves on a ring-shaped surface. J. Indian Math. Soc. 19, 109–114 (1931)

    Google Scholar 

  24. Ho, W.K.: On Blocking Numbers of Surfaces, preprint arXiv:0807.2934 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Gutkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bangert, V., Gutkin, E. Insecurity for compact surfaces of positive genus. Geom Dedicata 146, 165–191 (2010). https://doi.org/10.1007/s10711-009-9432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-009-9432-8

Keywords

Mathematics Subject Classification (2000)

Navigation