Skip to main content

A gap property for the growth of closed 3-manifold groups

Abstract

We provide a lower bound for the uniform exponential growth rate of closed nonflat nonpositively curved 3-manifold groups. A detailed study of the uniform exponential growth rate of closed 3-manifold groups is also presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Avez A.: Variétés riemanniennes sans point focaux. C. R. Acad. Sci. Paris, Sér. A 275, 1336–1363 (1972)

    Google Scholar 

  2. 2.

    Bartholdi L., De Cornulier Y.: Infinite groups with large balls of torsion and small entropy. Arch. Math. 87, 104–112 (2006)

    MATH  Article  Google Scholar 

  3. 3.

    Bessières, L., Besson, G., Boileau, M., Maillot, S., Porti, J.: Weak Collapsing and Geometrisation of Aspherical 3-manifolds. arXiv:0706.2065v2 (2008)

  4. 4.

    Besson G., Courtois G., Gallot S.: Amalgamated products, critical exponents and uniform growth of groups: a unified approach. J. Kor. Math. Soc. 44, 1051–1063 (2007)

    MATH  Article  Google Scholar 

  5. 5.

    Besson, G., Courtois, G., Gallot, S.: Uniform Growth of Groups Acting on Cartan-Hadamard Spaces. arXiv:0810.3151v1 (2008)

  6. 6.

    Breuillard E., Gelander T.: Cheeger constant and algebraic entropy of linear groups. Int. Math. Res. Not. 56, 3511–3523 (2004)

    MathSciNet  Google Scholar 

  7. 7.

    Button J.O.: Strong Tits alternative for compact 3-manifolds with boundary. J. Pure Appl. Alg. 191, 89–98 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    de la Harpe P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics, New York (1996)

    Google Scholar 

  9. 9.

    de la Harpe P., Bucher M.: Free products with amalgamation and HNN-extensions of uniformly exponential growth. Math. Notes 67, 811–815 (2000)

    Article  MathSciNet  Google Scholar 

  10. 10.

    Eberlein P.: A canonical form for compact nonpositively curved manifolds whose fundamental group have nontrivial center. Math. Ann. 260, 23–29 (1982)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Evans B., Moser L.: Solvable fundamental groups of compact 3-manifolds. Trans. Amer. Math. Soc. 168, 189–210 (1972)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Gromoll D., Wolf J.A.: Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature. Bull. Amer. Math. Soc. 77, 545–552 (1971)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Hempel, J.: 3-Manifolds. Princeton University Press. Ann. Math. Stud. 86. Princeton, NJ (1976)

  14. 14.

    Leeb B.: 3-manifolds with(out) metrics of nonpositive curvature. Invent. Math. 122, 277–289 (1995)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Milnor J.: A unique factorization theorem for 3-manifolds. Amer. J. Math. 84, 1–7 (1962)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Milnor J.: A note on curvature and fundamental group. J. Diff. Geom. 2, 1–7 (1968)

    MATH  MathSciNet  Google Scholar 

  17. 17.

    Morgan J., Tian G.: Ricci Flow and the Poincaré Conjecture. American Mathematical Society, Providence (2006)

    Google Scholar 

  18. 18.

    Osin D.V.: The entropy of solvable groups. Ergod. Th. Dynam. Sys. 23, 907–918 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Perelman, G.: Ricci Flow with Surgery on Three-manifolds. math.DG/0303109 (2003)

  20. 20.

    Scott P.: The geometries of 3-manifold. Bull. London Math. Soc. 15, 401–487 (1983)

    MATH  Article  MathSciNet  Google Scholar 

  21. 21.

    Shalen P.B., Wagreich P.: Growth rates, \({{\mathbb {Z}}_{p}}\) -homology, and volumes of hyperbolic 3-manifolds. Trans. Amer. Math. Soc. 331, 895–917 (1992)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luca Fabrizio Di Cerbo.

Additional information

Supported in part by a Marie Curie Fellowship and a Renaissance Technologies Fellowship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Cerbo, L.F. A gap property for the growth of closed 3-manifold groups. Geom Dedicata 143, 193–199 (2009). https://doi.org/10.1007/s10711-009-9383-0

Download citation

Keywords

  • Closed 3-manifold groups
  • Exponential growth rate

Mathematics Subject Classification (2000)

  • 20F65
  • 57M05