Advertisement

Geometriae Dedicata

, 136:191 | Cite as

Positive definite Minkowski Lie algebras and bi-invariant Finsler metrics on Lie groups

  • Shaoqiang DengEmail author
  • Zixin Hou
Original Paper

Abstract

In this paper, we introduce the notion of a Minkowski Lie algebra, which is the natural generalization of the notion of a real quadratic Lie algebra (metric Lie algebra). We then study the positive definite Minkowski Lie algebras and obtain a complete classification of the simple ones. Finally, we present some applications of our results to Finsler geometry and give a classification of bi-invariant Finsler metrics on Lie groups.

Keywords

Minkowski Lie algebras Quadratic Lie algebras Finsler metrics Compact Lie groups 

Mathematics Subject Classification (2000)

17B20 22E46 53C12 

References

  1. 1.
    Antonelli P.L., Ingarden R.S., Matsumoto M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, FTPH 58. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  2. 2.
    Atiyah M., Bott R.: The Yang-Mills equations over Riemannian surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bao D., Chern S.S., Shen Z.: An Introduction to Riemann-Finsler Geometry. Springer-Verlag, New York (2000)zbMATHGoogle Scholar
  4. 4.
    Bogoslovski, G.Y.: Status and Perspectives of Theory of Local Anisotropic Space-time. Physics of Nuclei and Particles. Moscow State University, Moscow (1997, In Russian)Google Scholar
  5. 5.
    Dadok J.: On the C Chevalley’s theorem. Adv. Math. 44, 121–131 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Deng S., Hou Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A Math. Gen. 37, 8245–8253 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Favre G., Santhroubane L.J.: Symmetric, invariant, non-degenerate bilinear forms on a Lie algebra. J. Algebra 105, 451–464 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978)zbMATHGoogle Scholar
  9. 9.
    Kath I., Olbrich M.: Metric Lie algebras with maximal isotropic centre. Math. Z 246, 23–53 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kath, I., Olbrich, M.: Metric Lie algebras and quadratic extensions. arXiv:Math. DG/0312243 (2003)Google Scholar
  11. 11.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2. Interscience Publishers, New York (1969)Google Scholar
  12. 12.
    Nippi C.R., Witten E.: A WZW model based on a non-semi-simple group. Phys. Rev. Lett. B 71, 3751 (1993)CrossRefGoogle Scholar
  13. 13.
    O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1993)Google Scholar
  14. 14.
    Pavlov D.G.: Four-dimensional time. Hypercomplex Numbers Geom. Phys. 1, 31–39 (2004)Google Scholar
  15. 15.
    Mohammedi N.: On bosonic and supper symmetric current algebras for non-semisimple group. Phys. Lett. B 325, 371 (1994)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Shen Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht (2001)zbMATHGoogle Scholar
  17. 17.
    Tam T.Y.: A unified extension of two results of Ky Fan on the sum of matrices. Proc. Am. Math. Soc. 126(9), 2607–2614 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Mathematical Sciences and LPMCNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations