Geometriae Dedicata

, 136:111 | Cite as

Total torsion of curves in three-dimensional manifolds

  • Claudia C. Pansonato
  • Sueli I. R. CostaEmail author
Original Paper


A classical result in differential geometry assures that the total torsion of a closed spherical curve in the three-dimensional space vanishes. Besides, if a surface is such that the total torsion vanishes for all closed curves, it is part of a sphere or a plane. Here we extend these results to closed curves in three dimensional Riemannian manifolds with constant curvature. We also extend an interesting companion for the total torsion theorem, which was proved for surfaces in \({\mathbb{R}^3}\) by L. A. Santaló, and some results involving the total torsion of lines of curvature.


Total torsion Constant curvature manifolds 

Mathematics Subject Classification (2000)



  1. 1.
    Costa, S.I.R., Firer, M.: Four-or-more-vertex theorems for constant curvature manifolds. In: Bruce, J., Tari, F. (eds.) Real and Complex Singularities, Research in Mathematics, pp. 164–172. Champman & Hall/CRC (2000)Google Scholar
  2. 2.
    Costa S.I.R., Romero-Fuster M.C.: Nowhere vanishing torsion closed curves always hide twice. Geom. Dedicata 66, 1–17 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dahlberg B.E.J.: The converse of the four vertex theorem. Proc. Am. Math. Soc. 133, 2131–2135 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    DeTurck D., Gluck H., Pomerleano D., Vick D.S.: The four vertex theorem and its converse. Not. AMS 54(2), 192–207 (2007)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Geppert H.: Sopra una caratterizzazione della sfera. Ann. Mat. 4, 59–66 (1941)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gluck H.: The converse of the four-vertex theorem. L’Enseignement Math. 17, 295–309 (1971)MathSciNetGoogle Scholar
  7. 7.
    Millman R.S., Parker G.D.: Elements of differential geometry. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1977)zbMATHGoogle Scholar
  8. 8.
    Osserman R.: The four-or-more vertex theorem. Am. Math. Monthly 92, 331–337 (1985)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pansonato, C.C., Costa, S.I.R.: Vertices of curves on constant curvature manifolds. In: Mond, D., Saia, M.J. (eds.) Real and Complex Singularities, Lecture Notes in Pure and Applied Mathematics, pp. 267–282. Marcell Decker Inc. (2003)Google Scholar
  10. 10.
    Qin Y.A., Li S.J.: Total torsion of closed lines of curvature. Bull. Aust. Math. Soc. 65, 73–78 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Røgen P.: Gauss-Bonnet’s theorem and closed Frenet frames. Geom. Dedicata 73, 295–315 (1998)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Santaló L.A.: Algunas propriedades de las curvas esféricas y una característica de la esfera. Revista Mat. Hispano-Americana 10, 1–4 (1935)Google Scholar
  13. 13.
    Santaló L.A.: Sobre unas propriedades características de la esfera. Univ. Nac. Tucumán Rev. Ser. A. 14, 287–297 (1962)Google Scholar
  14. 14.
    Spivak M.: A comprehensive introduction to differential geometry, vol. 1–5. Publish or Perish Inc., Houston (1979)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics, CCNEUniversity of Santa Maria – UFSMSanta MariaBrazil
  2. 2.Institute of MathematicsUniversity of Campinas – UnicampCampinasBrazil

Personalised recommendations