Geometriae Dedicata

, Volume 136, Issue 1, pp 79–93 | Cite as

On elementary antistretch lines

  • Guillaume ThéretEmail author
Original Paper


We solve the negative convergence problem for a particular class of stretch lines called elementary.


Teichmüller space Hyperbolic structure Geodesic lamination Stretch Thurston’s boundary 

Mathematics Subject Classification (2000)

30F60 57M50 53C22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, Y.-E., Rafi, K.: Comparison Between Teichmüller and Lipschitz Metric. arXiv: math.GT/0510136v1 7 Oct 2005Google Scholar
  2. 2.
    Choi,Y.-E., Rafi, K., Series, C.: Lines of Minima and Teichmüller Geodesics. arXiv: math.GT/0605135v1 4 May 2006Google Scholar
  3. 3.
    Fathi, A., Laudenbach, F., Poénaru, V. Travaux de Thurston sur les surfaces Astérisque, pp. 66–67 (1979)Google Scholar
  4. 4.
    Minsky Y.: Extremal length estimates and product regions in Teichmüller space. Duke Math. J. 83, 249–286 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Papadopoulos A.: On Thurston’s boundary of Teichmüller space and the extension of earthquakes. Topol. Appl. 41, 147–177 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Papadopoulos, A., Théret, G.: On Teichmüller’s metric and Thurston’s asymmetric metric on Teichmüller space. Handbook of Teichmüller Theory, vol.1, pp. 111–204. IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc. Zürich, 2007.Google Scholar
  7. 7.
    Théret G.: On the negative convergence of Thurston’s stretch lines towards the boundary of Teichmüller space. Ann. Acad. Sci. Fenn. Math. 32, 381–408 (2007)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Thurston, W.P.: Minimal Stretch Maps Between Hyperbolic Surfaces. arXiv:math/9801039Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematical ScienceUniversity of AarhusAarhus CDenmark

Personalised recommendations