Advertisement

Geometriae Dedicata

, 136:47 | Cite as

The Conley index for discontinuous vector fields

  • R. Casagrande
  • K. A. de RezendeEmail author
  • M. A. Teixeira
Original Paper
  • 82 Downloads

Abstract

In this paper, we define the Conley index \({\mathfrak{h}(D)}\) for a region of discontinuity D of a piecewise C k discontinuous vector field Z on an n-dimensional compact Riemannian smooth orientable manifold and prove it to be a homotopy invariant. This invariance is obtained by regularization of the discontinuous vector field. We use an adapted form of Lyapunov graph continuation to produce, in a few examples, a regularization of the discontinuous vector field with the property that the dynamics in a regularized neighborhood of D has the same Conley index as \({\mathfrak{h}(D)}\).

Keywords

Conley index theory Discontinuous vector fields 

Mathematics Subject Classification (2000)

37B30 34A36 

References

  1. 1.
    Andronov A.A., Vitt A.A., Khaikin S.E.: Theory of Ocillators. Dover, New York (1996)Google Scholar
  2. 2.
    di Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Olivar, G., Piiroinen, P.T.: Bifurcations in Non-smooth Dynamical Systems. Publications of the Bristol Centre for Applied Nonlinear Mathematics, N.4 (2005)Google Scholar
  3. 3.
    Bertolim, M.A., Mello, M.P., De Rezende, K.A.: Poincaré-Hopf and Morse Inequalities for Lyapunov Graphs, vol. 25, pp. 1–39. Ergodic Theory and Dynamical Systems (2005)Google Scholar
  4. 4.
    Broucke M.E., Pugh C.C, Simić S.N.: Structural stability of piecewise smooth systems. Comput. Appl. Math. 20(1–2), 51–89 (2001)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Lecture Notes, vol. 38. A.M.S. Providence, R.I. (1978)Google Scholar
  6. 6.
    Fillipov, A.F.: Differential Equations with Discontinuous Right-hand Sides. Kluwer (1988)Google Scholar
  7. 7.
    Gottlieb D.H., Samaranayake G.: The index of discontinuous vector fields. NY J. Math. 1, 130–148 (1995)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kunze, M.: Non-smooth Dynamical Systems. Lecture notes in Mathematics, 1744. Springer, Berlin-New York (2000)Google Scholar
  9. 9.
    Mrozek M.: A cohomological index of Conley type for multi-valued admissible flows. J. Differ. Equ. 84, 15–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sotomayor, J., Teixeira, M.A.: Regularization of discontinuous vector fields. In: Magalhães L., Rocha C., Sanches L. (eds.) Proceedings of the International Conference on Differential Equations, Equadiff 95, Lisboa, pp. 207–223. World Scientific (1998)Google Scholar
  11. 11.
    Sotomayor J., Machado A.F.: Structurally stable discontinuous vector fields in the plane. Qual. Theory Dyn. Syst. 3, 227–250 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Teixeira M.A.: Stability conditions for discontinuous vector fields. Int. Conf. J. Diff. Equ. 88, 15–29 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. Casagrande
    • 1
  • K. A. de Rezende
    • 1
    Email author
  • M. A. Teixeira
    • 1
  1. 1.Department of MathematicsIMECC/C.P.6065, University of Campinas–UNICAMPCampinasBrazil

Personalised recommendations