Geometriae Dedicata

, Volume 136, Issue 1, pp 1–15 | Cite as

Properties of Richard Thompson’s group F related to Følner sets

  • John DonnellyEmail author
Original Paper


The group F was invented in the 1960s by Richard Thompson, and is a subgroup of the group of all piecewise linear, orientation preserving homeomorphisms of the unit interval. R. Geoghegan has conjectured that F is an example of a finitely presented nonamenable group which has no free subgroup on two generators. In this article, we study properties of F related to amenability. We state some necessary conditions that a sequence of nonempty finite subsets of F must satisfy to be a sequence of Følner sets of F.


Richard Thompson’s group F Følner sets Ruinous sets Thin sets Amenability 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brin M.: The ubiquity of Thompson’s group F in groups of piecewise linear homeomorphisms of the real line. J. Lond. Math. Soc. (2) 60(2), 449–460 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brin M., Squier C.: Groups of piecewise linear homeomorphisms of the real line. Invent. Math. 79(3), 485–498 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brown K.S., Geoghegan R.: An infinite-dimensional torsion-free FP group. Invent. Math. 77, 367–381 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brown K.S.: Finiteness properties of groups. J. Pure Appl. Algebra 44, 45–75 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cannon J.W., Floyd W.J., Parry W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. (2) 42(3–4), 215–256 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dehornoy P.: The structure group for the associativity identity. J. Pure Appl. Algebra 111(1–3), 59–82 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Donnelly J.: Ruinous subsets of Richard Thompson’s Group F. J. Pure Appl. Algebra 208(2), 733–737 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Følner E.: On groups with full banach mean value. Math. Scand. 3, 243–254 (1955)MathSciNetGoogle Scholar
  9. 9.
    Blake Fordham S.: Minimal length elements of Thompson’s group F. Geom. Dedicata 99, 179–220 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Freyd P., Heller A.: Splitting homotopy idempotents II. J. Pure Appl. Algebra 89, 93–106 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gersten S.M.: Selected problems, combinatorial group theory and topology. In: Gersten, S.M., John, S. (eds.) Annals of Mathematics Studies, vol. 111, pp. 545–551. Princeton University Press (1987)Google Scholar
  12. 12.
    Grigorchuk, R.I.: Growth and amenability of a semigroup and its group of quotients. In: Proceedings of the International Symposium on the Semigroup Theory and its Related Fields, pp. 103–108. Kyoto (1990)Google Scholar
  13. 13.
    Guba V., Sapir M.: The Dehn function and a regular set of normal forms for R. Thompson’s group F. J. Austral. Math. Soc. Ser. A 62(3), 315–328 (1997)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Guba, V., Sapir, M.: Diagram groups. Mem. Amer. Math. Soc. 130(620) (1997)Google Scholar
  15. 15.
    McKenzie, R., Thompson, R.J.: An elementary construction of unsolvable word problems in group theory. In: Boone, W., Cannonito, F.B., Lyndon, R.C. (eds.) Word problems, pp. 457–478. North-Holland, (1973)Google Scholar
  16. 16.
    Thompson, R.J.: Handwritten, widely circulated, unpublished notes attributed to Thompson, (c. 1973+)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsMount Union CollegeAllianceUSA

Personalised recommendations