Skip to main content
Log in

Quasilinearization and curvature of Aleksandrov spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We present a new distance characterization of Aleksandrov spaces of non-positive curvature. By introducing a quasilinearization for abstract metric spaces we draw an analogy between characterization of Aleksandrov spaces and inner product spaces; the quasi-inner product is defined by means of the quadrilateral cosine—a metric substitute for the angular measure between two directions at different points. Our main result states that a geodesically connected metric space \({\left(\mathcal{M},\rho\right)}\) is an Aleksandrov \({\Re_{0}}\) domain (also known as a CAT(0) space) if and only if the quadrilateral cosine does not exceed one for every two pairs of distinct points in \({\mathcal{M}}\) . We also observe that a geodesically connected metric space \({\left(\mathcal{M},\rho\right)}\) is an \({\Re_{0}}\) domain if and only if, for every quadruple of points in \({\mathcal{M}}\) , the quadrilateral inequality (known as Euler’s inequality in \({\mathbb{R}^{2}}\)) holds. As a corollary of our main result we give necessary and sufficient conditions for a semimetric space to be an \({\Re_{0}}\) domain. Our results provide a complete solution to the Curvature Problem posed by Gromov in the context of metric spaces of non-positive curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: A theorem on triangles in a metric space and some of its applications. In: Trudy Mat. Inst. Steklov. 38, 5–23. Trudy Mat. Inst. Steklov. 38, Izdat. Akad. Nauk SSSR, Moscow (1951) (in Russian)

  2. Alexandrow, A.D.: Über eine Verallgemeinerung der Riemannschen Geometrie. Schr. Forschungsinst. Math. 1, 33–84 (1957)

    MathSciNet  Google Scholar 

  3. Aleksandrov, A.D.: Ruled surfaces in metric spaces. Vestnik Leningrad. Univ. 12(1), 5–26, 207 (1957) (in Russian)

    Google Scholar 

  4. Amir, D.: Characterizations of inner product spaces. Séminaire d’Analyse Fonctionelle 1984/1985, pp. 77–93. Publ. Math. Univ. Paris VII, 26, Univ. Paris VII, Paris (1986)

  5. Berg, I.D., Nikolaev, I.G.: On a distance between directions in an Aleksandrov space of curvature  ≤  K. Michigan Math. J. 45(2), 257–289 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berg, I.D., Nikolaev, I.G.: On an extremal property of quadrilaterals in an Aleksandrov space of curvature  ≤  K. In: The interaction of analysis and geometry, pp. 1–16, Contemp. Math., vol. 424. Am. Math. Soc., Providence, RI (2007)

  7. Berg, I.D., Nikolaev, I.G.: On a distance characterization of A.D. Aleksandrov spaces of non-positive curvature. Dokl. Akad. Nauk, 414(1), 1–3 (2007) (In Russian) English translation: Dokl. Math., 75(3), 336–338 (2007)

  8. Berestovskii, V.N.: Spaces with bounded curvature and distance geometry. Sibirsk. Mat. Zh. 27(1), 11–25, 197 (1986) (In Russian), English translation: Sib. Mat. J. 27, 8–19 (1986)

  9. Berestovskii, V.N., Nikolaev, I.G.: Multidimensional generalized Riemannian spaces. Geometry IV, 165–243, 245–250. In: Encyclopaedia Math. Sci., vol. 70, Springer, Berlin (1993)

  10. Blumenthal, L.M.: Theory and Applications of Distance Geometry, 2nd edn. Chelsea Publishing Co., New York (1970)

    Google Scholar 

  11. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Day, M.M.: Some characterizations of inner-product spaces. Trans. Am. Math. Soc. 62, 320–337 (1947)

    Article  MATH  Google Scholar 

  13. Day, M.M.: Normed linear spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, 21 . Reelle Funktionen Springer-Verlag, Berlin-Göttingen-Heidelberg, Reihe (1958)

  14. Enflo, P.: On the nonexistence of uniform homeomorphisms between L p -spaces. Ark. Mat. 8, 103–105 (1969)

    Article  MathSciNet  Google Scholar 

  15. Enflo, P.: Uniform structures and square roots in topological groups. I. Israel J. Math. 8, 230–252 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  16. Enflo, P.: Uniform structures and square roots in topological groups. II. Israel J. Math. 8, 253–272 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  17. Euler, L.: Variae demonstrationes geometriae. Novi Commentarii academiae scientiarum Petropolitanae 1, 49–66 (1750) (Opera Omnia, Ser. 1, 26, 29–32 (1953))

    Google Scholar 

  18. Foertsch, T., Lytchak, A., Schroeder, V.: Nonpositive curvature and the Ptolemy inequality. International Mathematics Research Notices (2007), article ID rnm100, 15 p., doi:10.1093/imrn/rnm100

  19. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Based on the 1981 French original. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathematics, vol. 152. Birkhäuser Boston, Inc., Boston, MA (1999)

  20. Jordan, P., Von Neumann, J.: On inner products in linear, metric spaces. Ann. of Math., 2nd Ser. 36(3), 719–723 (1935)

    Article  MathSciNet  Google Scholar 

  21. Kay, D.C.: The ptolemaic inequality in Hilbert geometries. Pacific J. Math. 21, 293–301 (1967)

    MATH  MathSciNet  Google Scholar 

  22. Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1(4), 561–659 (1993)

    MATH  MathSciNet  Google Scholar 

  23. Lafont, J.-.F, Prassidis, S.: Roundness properties of groups. Geom. Dedicata 117, 137–160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nikolaev, I.G.: Axioms of Riemannian geometry. Dokl. Akad. Nauk SSSR 307(4), 812–814 (1989) (In Russian); English translation: Soviet Math. Dokl. 40(1), 172–174 (1990)

  25. Nikolaev, I.G.: A metric characterization of Riemannian spaces. Siberian Adv. Math. 9(4), 1–58 (1999)

    MATH  MathSciNet  Google Scholar 

  26. Reshetnyak, Yu.G.: Non-expanding mappings in a space of curvature not greater than K. Sibirsk. Mat. Zh. s9, 918–927 (1968) (in Russian); English translation: Sib. Math. J. 9, 683–689 (1968)

  27. Schoenberg, I.J.: A remark on M. M. Day’s characterization of inner-product spaces and a conjecture of L. M. Blumenthal. Proc. Am. Math. Soc. 3, 961–964 (1952)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Nikolaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, I.D., Nikolaev, I.G. Quasilinearization and curvature of Aleksandrov spaces. Geom Dedicata 133, 195–218 (2008). https://doi.org/10.1007/s10711-008-9243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9243-3

Keywords

Mathematics Subject Classification (2000)

Navigation