Skip to main content
Log in

Convex rank 1 subsets of Euclidean buildings (of type A 2)

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For a Euclidean building X of type A 2, we classify the 0-dimensional subbuildings A of ∂ T X that occur as the asymptotic boundary of closed convex subsets. In particular, we show that triviality of the holonomy of a triple (of points of A) is (essentially) sufficient. To prove this, we construct new convex subsets as the union of convex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.T. (1983). The Dirichlet problem at infinity for manifolds of negative curvature. J. Differ. Geom. 18: 701–721

    MATH  Google Scholar 

  2. Ballmann, W.: Lectures on spaces of nonpositive curvature. DMV Seminar, Band 25. Birkhäuser (1995)

  3. Balser A. (2006). Polygons with prescribed gauss map in Hadamard spaces and Euclidean buildings. Can. Math. Bulletin. 49(3): 321–336

    MATH  MathSciNet  Google Scholar 

  4. Balser, A.: On the interplay between the Tits boundary and the interior of Hadamard spaces. PhD thesis, Munich; available at http://www.abalser.de.Accessed 04 Oct 2006

  5. Bridson M.R. and Haefliger A. (1999). Metric spaces of non-positive curvature. Springer, Berlin

    MATH  Google Scholar 

  6. Balser A. and Lytchak A. (2007). Building-like spaces, 2004, arXiv:math.MG/0410437. J. Math Kyoto. U. 46(4): 789–804

    MathSciNet  Google Scholar 

  7. Balser A. and Lytchak A. (2005). Centers of convex subsets of buildings. Ann. Global Anal. Geom. 28(2): 201–209

    Article  MATH  MathSciNet  Google Scholar 

  8. Hummel C., Lang U. and Schroeder V. (2000). Convex hulls in singular spaces of negative curvature. Ann. Global Anal. Geom. 18(2): 191–204

    Article  MATH  MathSciNet  Google Scholar 

  9. Kapovich, M., Leeb, B., Millson, J.J.: Polygons in buildings and their refined side lengths 2004, arXiv:math.MG/0406305

  10. Karpelevič, F.I.: The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces. Trans. Moscow Math. Soc. 14:51–199 (1965); Amer. Math. Soc. Providence, R.I. (1967)

    Google Scholar 

  11. Kleiner B. and Leeb B. (1997). Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math. 86: 115–197

    Article  MATH  MathSciNet  Google Scholar 

  12. Kleiner B. and Leeb B. (2006). Rigidity of invariant convex sets in symmetric spaces. Invent. Math. 163(3): 657–676

    Article  MATH  MathSciNet  Google Scholar 

  13. Kremser, R.: On buildings of non-archimedean norms from the perspective of non-positive curvature. Diploma thesis, University of Munich (2006)

  14. Leeb, B.: A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry. p. 326. Bonner Mathematische Schriften [Bonn Mathematical Publications]. Universität Bonn Mathematisches Institut, Bonn (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Balser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balser, A. Convex rank 1 subsets of Euclidean buildings (of type A 2). Geom Dedicata 131, 123–158 (2008). https://doi.org/10.1007/s10711-007-9221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9221-1

Keywords

Mathematics Subject Classification (2000)

Navigation