Skip to main content
Log in

The braid groups of the projective plane and the Fadell–Neuwirth short exact sequence

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the pure braid groups \(P_n({\mathbb{R}}P^2)\) of the real projective plane \({\mathbb{R}}P^2\) , and in particular the possible splitting of the Fadell–Neuwirth short exact sequence \(1 \to P_m({\mathbb{R}}P^2 \setminus \{x_1,\ldots, x_n\}) \hookrightarrow P_{n+m}({\mathbb{R}}P^2) \stackrel {p_{\ast}}{\to} P_n({\mathbb{R}}P^2) \to 1\) , where n  ≥  2 and m  ≥  1, and p * is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration \(p : F_{n+m}({\mathbb{R}}P^2) \to F_n({\mathbb{R}}P^2)\) of configuration spaces. Van Buskirk proved (1966, Trans. Am. Math. Soc., 122:81–97) that p and p * admit a section if n  =  2 and m  =  1. Our main result in this paper is to prove that there is no section if n  ≥  3. As a corollary, it follows that n  =  2 and m  =  1 are the only values for which a section exists. As part of the proof, we derive a presentation of \(P_n({\mathbb{R}}P^2)\) : this appears to be the first time that such a presentation has been given in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin E. (1925). Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4: 47–72

    Article  MATH  Google Scholar 

  2. Artin E. (1947). Theory of braids. Ann. Math. 48: 101–126

    Article  MathSciNet  Google Scholar 

  3. Artin E. (1947). Braids and permutations. Ann. Math. 48: 643–649

    Article  MathSciNet  Google Scholar 

  4. Baues, H.J.: Obstruction Theory on Homotopy Cclassification of Maps. Lecture Notes in Mathematics, vol. 628, Springer-Verlag, Berlin (1977)

  5. Bellingeri P. (2004). On presentations of surface braid groups. J. Algebra 274: 543–563

    Article  MathSciNet  MATH  Google Scholar 

  6. Birman J.S. (1969). On braid groups. Commun. Pure Appl. Math. 22: 41–72

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen F.R. and Gitler S. (2002). On loop spaces of configuration spaces. Trans. Am. Math. Soc. 354: 1705–1748

    Article  MathSciNet  MATH  Google Scholar 

  8. Fadell E. (1962). Homotopy groups of configuration spaces and the string problem of Dirac. Duke Math. J. 29: 231–242

    Article  MathSciNet  MATH  Google Scholar 

  9. Fadell, E., Husseini, S.Y.: Geometry and Topology of Configuration Spaces. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2001)

  10. Fadell E. and Neuwirth L. (1962). Configuration spaces. Math. Scand. 10: 111–118

    MathSciNet  MATH  Google Scholar 

  11. Fadell E. and Van Buskirk J. (1962). The braid groups of \(\mathbb{E}^2\) and \(\mathbb{S}^2\). Duke Math. J. 29: 243–257

    Article  MathSciNet  MATH  Google Scholar 

  12. Falk M. and Randell R. (1985). The lower central series of a fiber-type arrangement. Invent. Math. 82: 77–88

    Article  MathSciNet  MATH  Google Scholar 

  13. Fox R.H. and Neuwirth L. (1962). The braid groups. Math. Scand. 10: 119–126

    MathSciNet  MATH  Google Scholar 

  14. Gonçalves, D.L., Guaschi, J.: On the structure of surface pure braid groups. J. Pure Appl. Algebra 182, 33–64 (2003) (due to a printer’s error, this article was republished in its entirety with the reference 186 187–218 (2004))

    Google Scholar 

  15. Gonçalves D.L. and Guaschi J. (2004). The braid groups of the projective plane. Algebraic Geom. Topol. 4: 757–780

    Article  MATH  Google Scholar 

  16. Gonçálves D.L. and Guaschi J. (2007). The quaternion group as a subgroup of the sphere braid groups. Bull. Lond. Math. Soc. 39: 232–234

    Article  MathSciNet  MATH  Google Scholar 

  17. Gonçálves, D.L., Guaschi, J.: The lower central and derived series of the braid groups of the sphere. Chapters 2–3 of arXiv preprint \(\tt {math.GT/0603701}\)

  18. Gonçalves, D.L., Guaschi, J.: On the structure of pure braid groups of non-orientable surfaces. (in preparation)

  19. González-Meneses J. (2001). New presentations of surface braid groups. J. Knot Theory Ramif. 10: 431–451

    Article  MATH  Google Scholar 

  20. González-Meneses J. and Paris L. (2004). Vassiliev invariants for braids on surfaces. Trans. Am. Math. Soc. 356: 219–243

    Article  MATH  Google Scholar 

  21. Johnson, D.L.: Presentation of Groups, LMS Lecture Notes, vol. 22. Cambridge University Press (1976)

  22. Murasugi K. (1982). Seifert fibre spaces and braid groups. Proc. Lond. Math. Soc. 44: 71–84

    Article  MathSciNet  MATH  Google Scholar 

  23. Paris L. and Rolfsen D. (1999). Geometric subgroups of surface braid groups. Ann. Inst. Fourier 49: 417–472

    MathSciNet  MATH  Google Scholar 

  24. Rolfsen D. and Zhu J. (1998). Braids, orderings and zero divisors. J. Knot Theory Ramif. 7: 837–841

    Article  MathSciNet  MATH  Google Scholar 

  25. Scott G.P. (1970). Braid groups and the group of homeomorphisms of a surface. Proc. Camb. Phil. Soc. 68: 605–617

    MATH  Google Scholar 

  26. Van Buskirk J. (1966). Braid groups of compact 2-manifolds with elements of finite order. Trans. Am. Math. Soc. 122: 81–97

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang J.H. (2002). On the braid groups for \({\mathbb{R}}P^2\). J. Pure Appl. Algebra 166: 203–227

    Article  MathSciNet  MATH  Google Scholar 

  28. Whitehead, G.W.: Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York (1978)

  29. Zariski O. (1937). The topological discriminant group of a Riemann surface of genus p. Am. J. Math. 59: 335–358

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Guaschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, D.L., Guaschi, J. The braid groups of the projective plane and the Fadell–Neuwirth short exact sequence. Geom Dedicata 130, 93–107 (2007). https://doi.org/10.1007/s10711-007-9207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9207-z

Keyword

Mathematics Subject Classification (2000)

Navigation