Skip to main content
Log in

Topology of crystallographic tiles

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study self-affine tiles which tile the n-dimensional real vector space with respect to a crystallographic group. First we define classes of graphs that allow to determine the neighbors of a given tile algorithmically. In the case of plane tiles these graphs are used to derive a criterion for such tiles to be homeomorphic to a disk. As particular application, we will solve a problem of Gelbrich, who conjectured that certain examples of tiles which tile \({\mathbb{R}}^2\) with respect to the ornament group p2 are homeomorphic to a disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama S. and Thuswaldner J.M. (2004). A survey on topological properties of tiles related to number systems. Geom. Dedicata 109: 89–105

    Article  MATH  MathSciNet  Google Scholar 

  2. Akiyama S. and Thuswaldner J.M. (2005). The topological structure of fractal tilings generated by quadratic number systems. Comput. Math. Appl. 49: 1439–1485

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandt C. and Wang Y. (2001).Disk-like self-affine tiles in \({\mathbb{R}}^2\). Discrete Comput. Geom. 26: 591–601

    MATH  MathSciNet  Google Scholar 

  4. Burckhardt J. (1974). Die Bewegungsgruppen der Kristallographie. Birkhäuser, Basel

    Google Scholar 

  5. Gelbrich G. (1994). Crystallographic reptiles. Geom. Dedicata 51: 235–256

    Article  MATH  MathSciNet  Google Scholar 

  6. Grünbaum B. and Shephard G. (1987). Tilings and patterns. Freeman, New York

    MATH  Google Scholar 

  7. Hata M. (1985). On the structure of self-similar sets. Jpn. J. Appl. Math. 2: 381–414

    Article  MATH  MathSciNet  Google Scholar 

  8. Hutchinson J.E. (1981). Fractals and self-similarity. Indiana Univ. Math. J 30: 713–747

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuratowski, K.: Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York (1968)

  10. Luo J., Akiyama S. and Thuswaldner J.M. (2004). On the boundary connectedness of connected tiles. Math. Proc. Camb. Phil. Soc. 137: 397–410

    Article  MATH  MathSciNet  Google Scholar 

  11. Luo J., Rao H. and Tan B. (2002). Topological structure of self-similar sets. Fractals 10: 223–227

    Article  MATH  MathSciNet  Google Scholar 

  12. Luo J. and Zhou Z.L. (2004). Disk-like tiles derived from complex bases. Acta Math. Sin. (Engl. Ser.) 20: 731–738

    Article  MATH  MathSciNet  Google Scholar 

  13. Ngai S.-M. and Nguyen N. (2003). The Heighway dragon revisited. Discrete Comput. Geom. 29: 603–623

    MATH  MathSciNet  Google Scholar 

  14. Ngai S.-M. and Tang T.-M. (2004). A technique in the topology of connected self-similar tiles. Fractals 12: 389–403

    Article  MathSciNet  Google Scholar 

  15. Ngai S.-M. and Tang T.-M. (2005). Topology of connected self-similar tiles in the plane with disconnected interiors. Topology Appl. 150: 139–155

    Article  MATH  MathSciNet  Google Scholar 

  16. Scheicher, K., Thuswaldner, J.-M.: Fractals in Graz 2001, Birkhäuser Verlag (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg M. Thuswaldner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loridant, B., Luo, J. & Thuswaldner, J.M. Topology of crystallographic tiles. Geom Dedicata 128, 113–144 (2007). https://doi.org/10.1007/s10711-007-9186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9186-0

Keywords

Mathematics Subject Classifications (2000)

Navigation