Skip to main content
Log in

Non-free isometric immersions of Riemannian manifolds

  • Original paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let (V, g) be a Riemannian manifold and let \({\mathcal{D}}\) be the isometric immersion operator which, to a map \(f : (V, g)\rightarrow {\mathbb{R}}^q\) , associates the induced metric \({\mathcal{D}} (f)=g= f^{\ast}(\langle\cdot ,\cdot\rangle)\) on V, where \(\langle\cdot ,\cdot\rangle\) denotes the Euclidean scalar product in \({\mathbb{R}}^q\) . By Nash–Gromov implicit function theorem \({\mathcal{D}}\) is infinitesimally invertible over the space of free maps. In this paper we study non-free isometric immersions \({\mathbb{R}}^2\rightarrow {\mathbb{R}}^4\) . We show that the operator \({\mathcal{D}} : C^{\infty}({\mathbb{R}}^2, {\mathbb{R}}^4)\rightarrow \{{\mathcal{G}}\}\) (where \(\{\mathcal {G}\}\) denotes the space of C - smooth quadratic forms on \({\mathbb{R}}^2\)) is infinitesimally invertible over a non-empty open subset of \({\mathcal{A}}\subset C^{\infty}({\mathbb{R}}^2, {\mathbb{R}}^4)\) and therefore \({\mathcal{D}} : {\mathcal{A}}\rightarrow \{{\mathcal{G}}\}\) is an open map in the respective fine topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V., Varchenko, A., Goussein–Zadé, S.: Singularités des applications différentiable I Mir, Moscow (1986)

  2. D’Ambra G. (1993). Induced connections on S 1-bundles over Riemannian manifolds. Trans. AMS 338(2): 783–797

    Article  MATH  MathSciNet  Google Scholar 

  3. D’Ambra G. (1995). Nash C1-embedding theorem for Carnot–Caratheodory metrics. J. Diff. Geom. Appl. 5: 105–119

    Article  MATH  MathSciNet  Google Scholar 

  4. D’Ambra G. and Loi A. (2003). Inducing connections on SU(2)-bundles, JP. J. Geom. Topol. 3(1): 65–88

    MATH  MathSciNet  Google Scholar 

  5. Goreski, M., MacPherson, R.: Stratified Morse Theory. Springer Verlag (1988)

  6. Gromov M.: Partial Differential Relations. Springer-Verlag (1986)

  7. Gromov M. and Rokhlin V. (1970). Embeddings and immersions in Riemannian geometry. Uspekhi Mat. Nauk. 25(5): 3–62

    MATH  Google Scholar 

  8. Janet M. (1926). Sur la possibilit de plonger un espace riemannien donn dans un espece euclidien. Ann. Soc. Pol. Math. 5: 38–43

    Google Scholar 

  9. Nash J. (1956). The embedding problem for Riemannian manifolds. Ann. Math. 63(2): 20–63

    Article  MathSciNet  Google Scholar 

  10. Pansu, P.: Submanifolds and differential forms on Carnot manifolds, after M. Gromov and M. Rumin. preprint (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Loi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambra, G., Loi, A. Non-free isometric immersions of Riemannian manifolds. Geom Dedicata 127, 151–158 (2007). https://doi.org/10.1007/s10711-007-9173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9173-5

Keywords

Mathematics Subject Classifications (2000)

Navigation