Skip to main content
Log in

Dissecting the 2-sphere by immersions

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The self intersection of an immersion \(i: S^2 \to \mathbb {R}^3\) dissects S 2 into pieces which are planar surfaces (unless i is an embedding). In this work we determine what collections of planar surfaces may be obtained in this way. In particular, for every n we construct an immersion \(i: S^2 \to \mathbb {R}^3\) with 2n triple points, for which all pieces are discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smale S. (1958). A classification of immersions of the two-sphere. Trans. Amer. Math. Soc. 90: 281–290

    Article  Google Scholar 

  2. Smale S. (1959). The classification of immersions of spheres in Euclidean spaces. Ann. of Math. 69(2): 327–344

    Article  Google Scholar 

  3. Hirsch M.W. (1959). Immersions of manifolds. Trans. Amer. Math. Soc. 93: 242–276

    Article  MATH  Google Scholar 

  4. Hass J. and Hughes J. (1985). Immersions of surfaces in 3-manifolds. Topology 24(1): 97–112

    Article  MATH  Google Scholar 

  5. Pinkall U. (1985). Regular homotopy classes of immersed surfaces. Topology 24(4): 421–434

    Article  MATH  Google Scholar 

  6. Banchoff T.F. (1974). Triple points and surgery of immersed surfaces. Proc. Amer. Math. Soc. 46: 407–413

    Article  MATH  Google Scholar 

  7. Izumiya S. and Marar W.L. (1993). The Euler characteristic of a generic wavefront in a 3-manifold. Proc. Amer. Math. Soc. 118(4): 1347–1350

    Article  MATH  Google Scholar 

  8. Csikós B. and Szűcs A. (1995). On the number of triple points of an immersed surface with boundary. Manuscripta Math. 87(3): 285–293

    Article  MATH  Google Scholar 

  9. Ko KiHyoung and Carter J.S. (1989). Triple points of immersed surfaces in three-dimensional manifolds. Proceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987). Topology Appl. 32(2): 149–159

    Article  MATH  Google Scholar 

  10. Nowik, T.: Complementary regions for maps of surfaces. J. Knot Theory Ramifications - to appear

  11. Li Gui-Song (1998). On self intersections of immersed surfaces. Proc. Amer. Math. Soc. 126(12): 3721–3726

    Article  MATH  Google Scholar 

  12. Cromwell P.R. and Marar W.L. (1994). Semiregular surfaces with a single triple-point. Geom. Dedicata 52(2): 143–153

    Article  MATH  Google Scholar 

  13. Satoh S. (2001). Double decker sets of generic surfaces in 3-space as homology classes. Illinois J. Math. 45(3): 823–832

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahl Nowik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowik, T. Dissecting the 2-sphere by immersions. Geom Dedicata 127, 37–41 (2007). https://doi.org/10.1007/s10711-007-9153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9153-9

Keywords

Mathematics Subject Classification (2000)

Navigation