Skip to main content

An introduction to right-angled Artin groups

Abstract

Recently, right-angled Artin groups have attracted much attention in geometric group theory. They have a rich structure of subgroups and nice algorithmic properties, and they give rise to cubical complexes with a variety of applications. This survey article is meant to introduce readers to these groups and to give an overview of the relevant literature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abrams A. (2002). Configuration spaces of colored graphs. Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92: 185–194

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    Abrams A. and Ghrist R. (2002). Finding topology in a factory: configuration spaces. Am. Math. Monthly 109(2): 140–150

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Allcock D. (2002). Braid pictures for Artin groups. Trans. AMS 354: 3455–3474

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Altobelli J. (1998). The word problem for Artin groups of FC type. J. Pure Appl. Algebra 129(1): 1–22

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    Baudisch A. (1981). Subgroups of semifree groups. Acta Math. Acad. Sci. Hung. 38(1–4): 19–28

    Article  MathSciNet  Google Scholar 

  6. 6.

    Behrstock, J., Neumann, W.: Quasi-isometric classification of graph manifolds groups. Duke Math. J.

  7. 7.

    Bell R. (2005). Three-dimensional FC Artin groups are CAT(0). Geom. Dedicata 113: 21–53

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Bestvina M. (1999). Non-positively curved aspects of Artin groups of finite type. Geom. Topol. 3: 269–302

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Bestvina M. and Brady N. (1997). Morse theory and finiteness properties for groups. Invent. Math. 129: 445–470

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Bigelow S. (2001). Braid groups are linear. J. Amer. Math. Soc. 14(2): 471–486

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Bowers P. and Ruane K. (1996). Boundaries of nonpositively curved groups of the form G × Z n. Glasgow Math. J. 38(2): 177–189

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Brady N. and Crisp J. (2002). Two-dimensional Artin groups with CAT(0) dimension three. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000). Geom. Dedicata 94: 185–214

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Brady N. and Meier J. (2001). Connectivity at infinity for right angled Artin groups. Trans. Am. Math. Soc. 353(1): 117–132

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Brady T. (2000). Artin groups of finite type with three generators. Mich. Math J. 47: 313–324

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Brady T. and McCammond J. (2000). Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151: 1–9

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Brady T. and Watt C. (2002). K(π, 1)’s for Artin groups of finite type. Geom. Dedicata 94: 225–250

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Brändén, P.: Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture. Electron. J. Combin. 11 (2) 15, (2004/06) Research Paper 9

  18. 18.

    Bridson M. and Haefliger A. (1999). Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin

    Google Scholar 

  19. 19.

    Brieskorn E. (1971). Die Fundamentalgruppe des Raumes der regulren Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12: 57–61

    MATH  Article  MathSciNet  Google Scholar 

  20. 20.

    Brieskorn E. and Saito K. (1972). Artin-gruppen und Coxeter-gruppen. Invent. Math. 17: 245–271

    MATH  Article  MathSciNet  Google Scholar 

  21. 21.

    Charney R. (1992). Artin groups of finite type are biautomatic. Math. Ann.alen 292: 671–683

    MATH  Article  MathSciNet  Google Scholar 

  22. 22.

    Charney R. (1995). Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301: 307–324

    MATH  Article  MathSciNet  Google Scholar 

  23. 23.

    Charney R. (2004). The Deligne complex for the four-strand braid group. Trans. Am. Math. Soc. 356(10): 3881–3897

    MATH  Article  MathSciNet  Google Scholar 

  24. 24.

    Charney R. and Crisp J. (2005). Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett. 12(2–3): 321–333

    MATH  MathSciNet  Google Scholar 

  25. 25.

    Charney, R., Crisp, J., Vogtmann,K.: Automorphisms of 2-dimensional right-angled Artin groups. math. GR/0610980

  26. 26.

    Charney R. and Davis M. (1995). The K(π,1)-problem for hyperplane complements associated to infinite reflection groups. J. Am. Math. Soc. 8: 597–627

    MATH  Article  MathSciNet  Google Scholar 

  27. 27.

    Charney R. and Davis M. (1995). Finite K(π,1)’s for Artin groups. In: Quinn, F. (eds) Prospects in Topology., pp 110–124. Ann. of Math. Stud., vol. 138

    Google Scholar 

  28. 28.

    Charney R. and Davis M. (1995). The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific J. Math. 171(1): 117–137

    MATH  MathSciNet  Google Scholar 

  29. 29.

    Charney R. and Peifer D. (2003). The K(π,1) conjecture for the affine braid groups. Comment. Math. Helv. 78(3): 584–600

    MATH  Article  MathSciNet  Google Scholar 

  30. 30.

    Chermak A. (1998). Locally non-spherical Artin groups. J. Algebra 200(1): 56–98

    MATH  Article  MathSciNet  Google Scholar 

  31. 31.

    Cohen A. and Wales D. (2002). Linearity of Artin groups of finite type. Isreal J. of Math. 131: 101–123

    MATH  MathSciNet  Google Scholar 

  32. 32.

    Crisp J. and Paris L. (2001). The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group. Invent. Math. 145(1): 19–36

    MATH  Article  MathSciNet  Google Scholar 

  33. 33.

    Crisp J. and Wiest B. (2004). Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4: 439–472

    MATH  Article  MathSciNet  Google Scholar 

  34. 34.

    Croke C. and Kleiner B. (2000). Spaces with nonpositive curvature and their ideal boundaries. Topology 39: 549–556

    MATH  Article  MathSciNet  Google Scholar 

  35. 35.

    Culler M. and Vogtmann K. (1986). Moduli of graphs and automorphisms of free groups. Invent. Math. 84: 91–119

    MATH  Article  MathSciNet  Google Scholar 

  36. 36.

    Davis M. (1983). Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. (2) 117(2): 293–324

    Article  Google Scholar 

  37. 37.

    Davis M. (1998). The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(2): 297–314

    MATH  Article  MathSciNet  Google Scholar 

  38. 38.

    Davis M. and Januszkiewicz T. (2000). Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra 153(3): 229–235

    MATH  Article  MathSciNet  Google Scholar 

  39. 39.

    Davis M. and Leary I. (2003). The l 2-cohomology of Artin groups. J. Lond. Math. Soc. (2) 68(2): 493–510

    MATH  Article  MathSciNet  Google Scholar 

  40. 40.

    Davis M. and Meier J. (2002). The topology at infinity of Coxeter groups and buildings. Comment. Math. Helv. 77(4): 746–766

    MATH  Article  MathSciNet  Google Scholar 

  41. 41.

    Davis M. and Okun B. (2001). Vanishing theorems and conjectures for the 2-homology of right-angled Coxeter groups. Geom. Topol. 5: 7–74

    MATH  Article  MathSciNet  Google Scholar 

  42. 42.

    Deligne P. (1972). Les immeubles des groupes de tresses généralisés. Invent. Math. 17: 273–302

    MATH  Article  MathSciNet  Google Scholar 

  43. 43.

    Digne F. (2006). Presentations duales des groupes de tresses de type affine A͂. Comment. Math. Helv. 81(1): 23–47

    MATH  MathSciNet  Article  Google Scholar 

  44. 44.

    Droms C. (1987). Graph groups, coherence and three-manifolds. J. Algebra 106(2): 484–489

    MATH  Article  MathSciNet  Google Scholar 

  45. 45.

    Droms C. (1987). Isomorphisms of graph groups. Proc. Am. Math. Soc. 100(3): 407–408

    MATH  Article  MathSciNet  Google Scholar 

  46. 46.

    Droms C. (1987). Subgroups of graph groups. J. Algebra 110(2): 519–522

    MATH  Article  MathSciNet  Google Scholar 

  47. 47.

    Droms C., Servatius B. and Servatius H. (1989). Surface subgroups of graph groups. Proc. Am. Math. Soc. 106(3): 573–578

    MATH  Article  MathSciNet  Google Scholar 

  48. 48.

    Epstein D., Cannon J., Holt D., Levy S., Paterson M. and Thurston W. (1992). Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA

    MATH  Google Scholar 

  49. 49.

    Farley D. and Sabalka L. (2005). Discrete Morse theory and graph braid groups. Algebr. Geom. Topol. 5: 1075–1109

    MATH  Article  MathSciNet  Google Scholar 

  50. 50.

    Formanek E. and Procesi C. (1992). The automorphism group of a free group is not linear. J. Algebra 149(2): 494–499

    MATH  Article  MathSciNet  Google Scholar 

  51. 51.

    Fox R. and Neuwirth L. (1962). The braid groups. Math. Scand. 10: 119–126

    MATH  MathSciNet  Google Scholar 

  52. 52.

    Garside F. (1969). The braid group and other groups. Q. J. Math. Oxford 20: 235–254

    MATH  Article  MathSciNet  Google Scholar 

  53. 53.

    Ghrist, R.: Configuration Spaces and Braid Groups on Graphs in Robotics, Knots, Braids, and Mapping Class Groups—Papers Dedicated to Joan S. Birman (New York, 1998). AMS/IP Stud. Adv. Math., vol. (24). pp 29–40. Amer. Math. Soc., Providence, RI (2001)

  54. 54.

    Ghrist R. and Peterson V. (2007). The geometry and topology of reconfiguration. Adv. Appl. Math. 38: 302–323

    Article  MATH  MathSciNet  Google Scholar 

  55. 55.

    Ghrist R. and LaValle S. (2006). Nonpositive curvature and Pareto-optimal coordination of robots, to appear in SIAM J. Control Optim. 45(5): 1697–1713

    Article  MATH  MathSciNet  Google Scholar 

  56. 56.

    Green, E.: Graph Products of Groups, Thesis, The University of Leeds (1990)

  57. 57.

    Gromov M. Hyperbolic Groups. Essays in Group Theory, 75–263, Math. Sci. Res. Inst. Publ., 8, Springer, New York (1987)

  58. 58.

    Hermiller S. and Meier J. (1995). Algorithms and geometry for graph products of groups. J. Algebra 171(1): 230–257

    MATH  Article  MathSciNet  Google Scholar 

  59. 59.

    Hsu T. and Wise D. (1999). On linear and residual properties of graph products. Mich. Math. J. 46(2): 251–259

    MATH  Article  MathSciNet  Google Scholar 

  60. 60.

    Hsu T. and Wise D. (2002). Separating quasiconvex subgroups of right-angled Artin groups. Math. Z. 240(3): 521–548

    MATH  Article  MathSciNet  Google Scholar 

  61. 61.

    Jensen C. and Meier J. (2005). The cohomology of right-angled Artin groups with group ring coefficients. Bull. Lond. Math. Soc. 37(5): 711–718

    MATH  Article  MathSciNet  Google Scholar 

  62. 62.

    Krammer D. (2002). Braid groups are linear. Ann. Math. (2) 155(1): 131–156

    MATH  MathSciNet  Google Scholar 

  63. 63.

    Laurence M. (1995). A generating set for the automorphism group of a graph group. J. Lond. Math. Soc. (2) 52: 318–334

    MATH  MathSciNet  Google Scholar 

  64. 64.

    Leary I. and Nucinkis B. (2003). A. Some groups of type VF. Invent. Math. 151(1): 135–165

    MATH  Article  MathSciNet  Google Scholar 

  65. 65.

    van der Lek, H.: The Homotopy Type of Complex Hyperplane Complements, Ph.D. thesis, Nijmegan (1983)

  66. 66.

    Meier J., Meinert H. and VanWyk L. (1998). Higher generation subgroup sets and the Σ-invariants of graph groups. Comment. Math. Helv. 73(1): 22–44

    MATH  Article  MathSciNet  Google Scholar 

  67. 67.

    Meier J. and VanWyk L. (1995). The Bieri-Neumann-Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71(2): 263–280

    MATH  Article  MathSciNet  Google Scholar 

  68. 68.

    Metaftsis V. and Raptis E. (2004). Subgroup separability of graphs of abelian groups. Proc. Am. Math. Soc. 132(7): 1873–1884

    MATH  Article  MathSciNet  Google Scholar 

  69. 69.

    Metaftsis, V., Raptis, E.: On the profinite topology of right-angled Artin groups, math.GR/0608190

  70. 70.

    Niblo G. and Reeves L. (1998). The geometry of cube complexes and the complexity of their fundamental groups. Topology 37: 621–633

    MATH  Article  MathSciNet  Google Scholar 

  71. 78.

    Papadima S. and Suciu A. (2006). Algebraic invariants for right-angled Artin groups. Math. Ann. 334(3): 533–555

    MATH  Article  MathSciNet  Google Scholar 

  72. 71.

    Peifer D. (1996). Artin groups of extra-large type are biautomatic. J. Pure Appl. Algebra 110: 15–56

    MATH  Article  MathSciNet  Google Scholar 

  73. 72.

    Reiner V. and Welker V. (2005). On the Charney–Davis and Neggers–Stanley conjectures. J. Combin. Theory Ser. A 109(2): 247–280

    MATH  Article  MathSciNet  Google Scholar 

  74. 73.

    Sabalka, L.: Embedding right-angled Artin groups into graph braid groups. Geom Dedicata

  75. 74.

    Sageev M. and Wise D. (2005). The Tits alternative for CAT(0) cubical complexes. Bull. Lond Math. Soc. 37(5): 706–710

    MATH  Article  MathSciNet  Google Scholar 

  76. 75.

    Salvetti M. (1987). Topology of the complement of real hyperplanes in \({\mathbb{C}}^n\). Invent. Math. 88: 603–618

    MATH  Article  MathSciNet  Google Scholar 

  77. 76.

    Servatius H. (1989). Automorphisms of graph groups. J. Algebra 126: 34–60

    MATH  Article  MathSciNet  Google Scholar 

  78. 77.

    Scott, R.: Right-angled mock reflection and mock Artin groups. Trans. Am. Math. Soc. to appear

  79. 79.

    VanWyk L. (1994). Graph groups are biautomatic. J. Pure Appl. Algebra 94(3): 341–352

    Article  MathSciNet  Google Scholar 

  80. 80.

    Vinberg E. (1971). Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35: 1072–1112

    MATH  MathSciNet  Google Scholar 

  81. 81.

    Wilson J. (2005). A CAT(0) group with uncountably many distinct boundaries. J. Group Theory 8(2): 229–238

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruth Charney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Charney, R. An introduction to right-angled Artin groups. Geom Dedicata 125, 141–158 (2007). https://doi.org/10.1007/s10711-007-9148-6

Download citation

Keywords

  • Artin group
  • CAT(0) cube complex

Mathematics Subject Classification (1991)

  • 20F36